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Early in a typical abstract algebra course we learn that the set U(n) = {0 < x ≤ n | gcd(x, n) =

1} is a group under multiplication mod n for every n ≥ 1. This first appears as example 11 in

Chapter 2 of Gallian’s excellent text [2], for instance. These groups are particularly nice: it is not

hard to see, but not immediately obvious, that they are groups; they are important in some modern

cryptographic applications; and they figure prominently in elementary number theory.

Some of the groups U(n) are cyclic and some are not, and the two categories can be completely

characterized by the form of the prime factorization of n. If U(n) is cyclic then we can write

U(n) = 〈g〉 for some g ∈ Zn, relatively prime to n. In number theory g is known as a primitive

root modulo n; we will call the characterization of those n with primitive roots the Primitive Root

Theorem, or PRT.

I recently taught an abstract algebra course using Gallian’s text, and I wanted to prove the

PRT for the class. Though this result is standard in elementary number theory books (See, e.g., in

[3]), the number-theoretic notation and proofs would have led me farther afield than I cared to go.

I failed to find an algebraic proof of the result, but put one together by mining the proof in [3] for

hints. The proof uses many results and exercises from [2]; this made it a satisfying conclusion to

my course. Most of the proof requires only group theory, though some field theory and experience

with polynomial rings is required at the very end.

This proof should be accessible to students who have been through any standard undergraduate

course. I will refer explicitly to theorems and exercises in [2].

Here is what we are shooting for:

Theorem. (Primitive Root Theorem) U(n) is cyclic if and only if n is 1, 2, 4, pk, or 2pk, where

p is an odd prime and k ≥ 1.

Preliminaries First, we need some facts from number theory. The number of elements in U(n)

is commonly denoted by φ(n), the Euler phi-function or totient function. When p is prime, φ(p) =

p−1, because every number in {1, 2, . . . , p−1} is relatively prime to p. Also, φ(pk) = pk−pk−1 for
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prime p, because precisely pk−1 of the pk integers in {1, 2, . . . , pk} are multiples of p, and all other

integers in that range that are relatively prime to pk. Note for future reference that if p is an odd

prime, or if p = 2 and k ≥ 2, then pk− pk−1 is even. (This is all we will need about φ, but it is also

true that if m and n are relatively prime then φ(mn) = φ(m)φ(n). Thus φ(n) =
∏k

i=1(p
ai
i − p

ai−1
i )

if n =
∏k

i=1 p
ai
i is the prime factorization of n.)

It is easy to check the primitive root theorem for n = 1, 2, 4 directly. (Don’t take my word for

it—do it!)

Recall that every cyclic group has exactly one subgroup of order d for each d that divides the

order of the group. Thus we may show that U(2k) is not cyclic for k > 2 by showing that U(2k)

contains two distinct elements of order 2, each of which generates a subgroup of order 2. We leave

this as an exercise; it is number 54 in chapter 4 of Gallian.

In Chapter 8, External Direct Products, Gallian characterizes the direct products that are cyclic

groups:

If G ∼= G1 ⊕ · · · ⊕Gm, then G is cyclic if and only if the Gi are cyclic and their orders

are pairwise relatively prime.

Gallian also proves (modulo some exercises left to the reader) that if m = n1n2 · · ·nk, and the ni

are pairwise relatively prime, then U(m) ∼= U(n1) ⊕ · · · ⊕ U(nk). It is now not hard to see that

U(n) is not cyclic if n is divisible by two distinct odd primes or by 4 and an odd prime, using the

fact (mentioned earlier) that pk−pk−1 is even when p is an odd prime or p = 2 and k ≥ 2, together

with U(
∏k

i=1 p
ai
i ) ∼= U(pa11 )⊕ · · · ⊕ U(pakk ). (Exercise 46 of Chapter 8 is essentially this result.)

Now we know that the only groups that might be cyclic are U(pk) and U(2pk). (A different

algebraic proof of this much appeared in [1].)

In what follows, p always denotes an odd prime. Since U(2pk) ∼= U(2) ⊕ U(pk) ∼= U(pk), we

need only show that U(pk) is cyclic. We will show that, if U(p) is cyclic, then U(p2) is cyclic; that

this implies that U(pk) is cyclic for k > 2; and, finally, that U(p) is cyclic.

If G is a finite group, every g ∈ G has an order, denoted |g|, which is the smallest positive

integer m such that gm = e (e is the identity of the group). Recall that gk = e if and only if |g|
divides k, and that Lagrange’s Theorem tells us that |g| divides |G|.

For the first step, we suppose that U(p) is cyclic and show that U(p2) is cyclic. Let U(p) = 〈g〉,
g ∈ {1, 2, . . . , p − 1}. We will show that either g or g + p generates U(p2). Let ht be the order of

g + tp, t = 0 or 1, so that (g + tp)ht ≡ 1 (mod p2); then (g + tp)ht ≡ 1 (mod p) as well. Now

1 ≡ (g + tp)ht = ght +

(
ht
1

)
ght−1tp+

(
ht
2

)
ght−2(tp)2 + · · ·+ (tp)ht ≡ ght (mod p),
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so the order of g in U(p) divides ht, that is, (p− 1) divides ht. Since ht is the order of an element

of U(p2), we also know that ht divides |U(p2)| = p(p − 1). Thus, ht = p − 1 or ht = p(p − 1); we

want to show that the latter is true for at least one of t = 0 or t = 1. Suppose not, so that

gp−1 ≡ (g + p)p−1 ≡ 1 (mod p2).

Then

(g + p)p−1 = gp−1 +

(
p− 1

1

)
gp−2p+

(
p− 1

2

)
gp−3p2 + · · ·+ pp−1,

or, modulo p2,

1 ≡ 1 + (p− 1)gp−2p, so 0 ≡ (p− 1)gp−2p.

But p2 does not divide (p − 1)gp−2p. This contradiction implies that either g or g + p has order

p(p− 1), and generates U(p2).

Now we suppose that g generates U(p2) and show that g generates U(pk), k ≥ 2. We proceed

by induction. Suppose that g generates U(p2) and U(pi), for all i such that 2 ≤ i ≤ k, where k ≥ 2.

In particular, in U(pk), the order of g is pk−1(p − 1) and, if k > 2, in U(pk−1) the order of g is

pk−2(p − 1). Let h denote the order of g in U(pk+1); we want to show that h = pk(p − 1). Since

gh ≡ 1 (mod pk+1), it is also true that gh ≡ 1 (mod pk). This means that the order of g in U(pk)

divides h, that is, pk−1(p − 1) divides h. Also, h divides |U(pk+1)|, that is, h divides pk(p − 1),

because h is the order of an element of U(pk+1). Thus h = pk(p−1) or h = pk−1(p−1); we need to

show that the latter is not possible. It suffices to show that gp
k−1(p−1) 6≡ 1 (mod pk+1). We know

that gp
k−2(p−1) 6≡ 1 (mod pk) and gp

k−2(p−1) ≡ 1 (mod pk−1), by the induction hypothesis (or by

direct verification if k = 2). Thus gp
k−2(p−1) = 1 + bpk−1 for some b not divisible by p. Then

gp
k−1(p−1) = (1 + bpk−1)p

= 1 +

(
p

1

)
bpk−1 +

(
p

2

)
b2p2k−2 + · · ·+

(
p

p− 1

)
bp−1p(p−1)(k−1) + bpppk−p.

Since pk−p ≥ k+1, pk+1 divides the last term in this sum. The binomial coefficient
(
p
i

)
is divisible

by p when 1 ≤ i ≤ p− 1, because p is prime and(
p

i

)
=

p!

i!(p− i)!
,

with every factor in the denominator i!(p− i)! less than p. Together with the fact that 2k− 2 ≥ k,

this means that pk+1 divides every term in the preceding sum except the first two, so

gp
k−1(p−1) ≡ 1 + bpk (mod pk+1).

Since p does not divide b,

gp
k−1(p−1) 6≡ 1 (mod pk+1),

which is what we were after—now we know that g generates U(pk+1).
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Completing the Cycle Finally, it all comes down to U(p). We need to know that some g ∈ U(p)

has order m = p − 1. Pick g to have order m in U(p), with m as large as possible. If h is any

element of U(p), then |h| divides |g|, for suppose not. Then we may write |h| = qra and |g| = qsb,

where q is prime, r > s, and q does not divide either a or b. That is, if |h| does not divide |g|, it

must be because some prime q appears more often in the factorization of |h| than the factorization

of |g|. Now in U(p),

(hag)q
rb = (hq

ra)b(gq
sb)q

r−s
= 1,

so |hag| divides qrb. Thus the order of hag must be qtc, where t ≤ r and c|b. If t < r, then

1 = (hag)q
r−1b = (hq

r−1a)b(gq
r−1b) = (hq

r−1a)b,

so |h| divides qr−1ab, a contradiction. On the other hand, if c < b, then

1 = (hag)q
rc = (hq

ra)cgq
rc = gq

rc,

so |g| divides qrc, another contradiction. Thus t = r and c = b, and the order of hag is qrb > qsb =

|g|, yet another contradiction, since g was chosen to have largest possible order. Hence, |h| divides

|g| = m.

Now we need a bit of field theory and we’re done. For every h ∈ U(p), hm = 1, that is, h is a

root of the polynomial xm− 1, so xm− 1 has p− 1 roots in U(p) and in Zp. But since Zp is a field,

xm − 1 can have at most m roots. Thus p − 1 ≤ m, so in fact the order of g is p − 1 and U(p) is

cyclic.

Acknowledgment. Many thanks to the referee for suggesting the proof used here that U(p) is cyclic.
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