SAMPLE EXAM 1 ANSWERS

Vectors are denoted by bold letters: a, $\mathbf{v}, \mathbf{r}(t)$, etc.

1. Let $\mathbf{a}=\langle 1,0,-1\rangle, \mathbf{b}=\langle-2,3,5\rangle$. Find $|\mathbf{a}|, \mathbf{a}-\mathbf{b}$, and a unit vector in the same direction as $\mathbf{a}-\mathbf{b}$.

Answer. $|\mathbf{a}|=\sqrt{2} ; \mathbf{a}-\mathbf{b}=\langle 3,-3,-6\rangle$; unit vector is $(\mathbf{a}-\mathbf{b}) /|\mathbf{a}-\mathbf{b}|=$ $\langle 3 / \sqrt{54},-3 / \sqrt{54},-6 / \sqrt{54}\rangle$.
2. Let $\mathbf{v}=\langle 5,-1,6\rangle, \mathbf{w}=\langle-2,2,-4\rangle$. Find $\mathbf{v} \cdot \mathbf{w}$ and the cosine of the angle between \mathbf{v} and \mathbf{w}.
Answer. $\mathbf{v} \cdot \mathbf{w}=-36 ; \cos \theta=\frac{-36}{\sqrt{62} \sqrt{24}}$.
3. Which of the pairs of vectors $\{\mathbf{a}, \mathbf{b}\},\{\mathbf{a}, \mathbf{c}\},\{\mathbf{b}, \mathbf{c}\}$ are perpendicular? $\mathbf{a}=\langle 1,2,2\rangle$, $\mathbf{b}=\langle 8,-11,7\rangle, \mathbf{c}=\langle-3,1,5\rangle$.

Answer. $\mathbf{a} \perp \mathbf{b}, \mathbf{b} \perp \mathbf{c}$.
4. Suppose that $|\mathbf{v}|=2,|\mathbf{w}|=3$ and the cosine of the angle between \mathbf{v} and \mathbf{w} is $4 / 5$. Find $|\mathbf{v} \times \mathbf{w}|$.

Answer. $|\mathbf{v} \times \mathbf{w}|=|\mathbf{v}||\mathbf{w}| \sin \theta=2 \cdot 3 \cdot 3 / 5=18 / 5$. (Use $\sin \theta=\sqrt{1-\cos ^{2} \theta}$.)
5. Find the vector that is called the projection of \mathbf{a} onto \mathbf{b}, using $\mathbf{a}=\langle 2,2,2\rangle$ and $\mathbf{b}=$ $\langle 1,-1,-1\rangle$.

Answer. The projection is

$$
\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|} \frac{\mathbf{b}}{|\mathbf{b}|}=-\frac{2}{3}\langle 1,-1,-1\rangle=\left\langle-\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right\rangle .
$$

6. Compute the cross product of $\langle 3,4,5\rangle$ and $\langle-5,-1,2\rangle$.

Answer. $\langle 13,-31,17\rangle$.
7. Find an equation of the plane containing the points $(1,2,1),(-2,0,-3),(4,-1,0)$.

Answer. $2 x+3 y-3 z=5$.
8. Find an equation for the line that is the intersection of the planes $x+y+z=2$ and $3 x-2 y-z=-5$.

Answer. $\mathbf{r}=\langle-1 / 5,11 / 5,0\rangle+t\langle 1,4-5\rangle$.
9. Find an equation for the plane that is perpendicular to both of the planes $x+y+z=2$ and $3 x-2 y-z=-5$ and contains the point $(1,1,1)$.

Answer. $x+4 y-5 z=0$.
10. Let $\mathbf{r}(t)=\left\langle t^{2}+2, t^{2}-4 t, 2 t\right\rangle$. Find the tangent line at the point $(6,-4,4)$.

Answer. $\mathbf{r}=\langle 6,-4,4\rangle+t\langle 4,0,2\rangle$.
11. Find the curvature of $\mathbf{r}(t)$ from the previous problem as a function of t and also find the curvature at $(6,-4,4)$.

Answer.

$$
\kappa(t)=\frac{\sqrt{96}}{\left(4 t^{2}+(2 t-4)^{2}+4\right)^{(3 / 2)}} ; \quad \kappa(2)=\frac{\sqrt{96}}{(20)^{(3 / 2)}} .
$$

12. Suppose in $\mathbf{r}(t)$ from the previous two problems that t is time. Find the acceleration vector $\mathbf{a}(t)$. Find the scalar accelerations a_{T} and a_{N}.

Answer. $\mathbf{a}(t)=\langle 2,2,0\rangle$.

$$
\begin{aligned}
a_{N} & =\kappa v^{2}=\frac{\sqrt{96}}{\left(4 t^{2}+(2 t-4)^{2}+4\right)^{(1 / 2)}} \\
a_{T} & =\frac{\mathbf{r}^{\prime} \cdot \mathbf{r}^{\prime \prime}}{\left|\mathbf{r}^{\prime}\right|}=\frac{8 t-8}{\left(4 t^{2}+(2 t-4)^{2}+4\right)^{(1 / 2)}}
\end{aligned}
$$

13. Suppose an object moves so that its velocity vector is $\left\langle t, t^{2}, 1\right\rangle$, and at $t=0$ it is at the point $(1,1,1)$. Where is it at $t=1$?

Answer. A vector from the starting point to the ending point is

$$
\int_{0}^{1} \mathbf{v}(t) d t=\left.\left\langle t^{2} / 2, t^{3} / 3, t\right\rangle\right|_{0} ^{1}=\langle 1 / 2,1 / 3,1\rangle
$$

so a vector to the final point from the origin is $\langle 1,1,1\rangle+\langle 1 / 2,1 / 3,1\rangle=\langle 3 / 2,4 / 3,2\rangle$.
Alternately, $\mathbf{r}(t)=\left\langle t^{2} / 2+1, t^{3} / 3+1, t+1\right\rangle$, so $\mathbf{r}(1)=\langle 3 / 2,4 / 3,2\rangle$.
Thus, at $t=1$ the object is at $(3 / 2,4 / 3,2)$.

