SAMPLE EXAM 2 ANSWERS

1. Let $f(x, y)=\ln \left(x^{2}+y^{2}\right)$. Compute the partial derivatives $f_{x}, f_{y}, f_{x x}, f_{y y}, f_{x y}, f_{y x}$.

Answer.

$$
\begin{gathered}
f_{x}=2 x /\left(x^{2}+y^{2}\right) \quad f_{y}=2 y /\left(x^{2}+y^{2}\right) \quad f_{x y}=f_{y x}=-4 x y /\left(x^{2}+y^{2}\right)^{2} \\
f_{x x}=\left(2 y^{2}-2 x^{2}\right) /\left(x^{2}+y^{2}\right)^{2} \quad f_{y y}=\left(2 x^{2}-2 y^{2}\right) /\left(x^{2}+y^{2}\right)^{2}
\end{gathered}
$$

2. Describe the level curves of $f(x, y)=\frac{x^{2}}{9}+\frac{y^{2}}{16}$.

Answer. All level curves are ellipses with center at the origin. The level curve $k=x^{2} / 9+y^{2} / 16$ has intercepts at $x= \pm 3 \sqrt{k}$ and $y= \pm 4 \sqrt{k}$.
3. Find an equation for the tangent plane to $z=e^{y} \ln x$ at $(1,3,0)$.

Answer. $f_{x}=e^{y} / x, f_{y}=e^{y} \ln x$. A normal to the tangent plane at $(1,3,0)$ is therefore $\left\langle e^{3}, 0,-1\right\rangle$, and the tangent plane is given by $z=e^{3}(x-1)$.
4. Use the "two-variable" version of the chain rule to compute $g^{\prime}(t)$ if $g(t)=f(x, y)$, and $x=t^{2}, y=\cos t$.

Answer. $g^{\prime}(t)=f_{x}(x, y) \cdot 2 t+f_{y}(x, y)(-\sin t)$.
5. Suppose $z=f(x, y)$. At a particular point $\left(x_{0}, y_{0}\right), \nabla f=\langle a, b\rangle$ is a vector. Describe the significance of both the length and the direction of this vector $\langle a, b\rangle$.

Answer. The direction of ∇f is the direction in which f increases most rapidly. The rate at which f increases most rapidly is $|\nabla f|$.
6. Find the directional derivative of $f(x, y, z)=x^{2} y z^{3}+x y-z$ at the point $(1,1,1)$ in the direction indicated by the vector $\langle 1,2,3\rangle$.

Answer. $D_{\mathbf{u}} f=\langle 3,2,2\rangle \cdot\langle 1,2,3\rangle / \sqrt{14}=13 / \sqrt{14}$.
7. Suppose $P(x, y, z)=x^{4} y-x^{2} y^{3}+y \sin z$ gives the pressure at each point (x, y, z). At the point $(2,1, \pi / 4)$, in what direction does the pressure decrease most rapidly? Give your answer as a vector that points in the correct direction.

Answer. The direction of maximum decrease is given by $-\nabla P=\langle-28,-4-$ $\sqrt{2} / 2,-\sqrt{2} / 2\rangle$.
8. The point $(1,-2,4)$ is on the surface described by $z=x^{2} y^{2}+y \ln x$. Find a vector in one of the two possible directions to go from this point to stay on the level curve $z=4$.

Answer. The gradient vector is $\langle 6,-4\rangle$, so a vector in one of the two desired directions is $\langle 4,6\rangle$.
9. Find all critical points for $z=x \sin y$ and classify them as local maximum points, local minimum points, or saddle points.

Answer. The partial derivatives are

$$
\begin{gathered}
f_{x}=\sin y \quad f_{y}=x \cos y \quad f_{x y}=f_{y x}=\cos y \\
f_{x x}=0 \quad f_{y y}=-x \sin y
\end{gathered}
$$

The first partial derivatives are both zero when $x=0$ and $y=n \pi$, for any integer n. $D(0, n \pi)=-\cos ^{2}(n \pi)=-1<0$, so all are saddle points.
10. Find the maximum and minimum values of $f(x, y)=x^{2}-y^{2}$ above the curve given by $x^{2}+2 y^{2}=1$.

Answer. From the second equation, $x^{2}=1-2 y^{2}$, so we want to find the maximum and minimum values of $g(y)=1-3 y^{2}$ when $-1 / \sqrt{2} \leq y \leq 1 / \sqrt{2}$. $g^{\prime}(y)=-6 y$ so there is a critical point when $y=0$. The values of g to check are $g(0)=1$ and $g(\pm 1 / \sqrt{2})=-1 / 2$. The maximum of f is 1 and the minimum is $-1 / 2$.

