SAMPLE EXAM 2 ANSWERS

1. Let $f(x, y) = \ln(x^2 + y^2)$. Compute the partial derivatives f_x , f_y , f_{xx} , f_{yy} , f_{xy} , f_{yx} . Answer.

$$f_x = \frac{2x}{x^2 + y^2} \qquad f_y = \frac{2y}{x^2 + y^2} \qquad f_{xy} = \frac{f_{yx}}{f_{yy}} = \frac{-4xy}{x^2 + y^2}$$
$$f_{xx} = \frac{(2y^2 - 2x^2)}{(x^2 + y^2)^2} \qquad f_{yy} = \frac{(2x^2 - 2y^2)}{(x^2 + y^2)^2}$$

2. Describe the level curves of $f(x, y) = \frac{x^2}{9} + \frac{y^2}{16}$.

Answer. All level curves are ellipses with center at the origin. The level curve $k = x^2/9 + y^2/16$ has intercepts at $x = \pm 3\sqrt{k}$ and $y = \pm 4\sqrt{k}$.

3. Find an equation for the tangent plane to $z = e^{y} \ln x$ at (1, 3, 0).

Answer. $f_x = e^y/x$, $f_y = e^y \ln x$. A normal to the tangent plane at (1, 3, 0) is therefore $\langle e^3, 0, -1 \rangle$, and the tangent plane is given by $z = e^3(x - 1)$.

4. Use the "two-variable" version of the chain rule to compute g'(t) if g(t) = f(x, y), and $x = t^2$, $y = \cos t$.

Answer. $g'(t) = f_x(x, y) \cdot 2t + f_y(x, y)(-\sin t)$.

5. Suppose z = f(x, y). At a particular point (x_0, y_0) , $\nabla f = \langle a, b \rangle$ is a vector. Describe the significance of both the length and the direction of this vector $\langle a, b \rangle$.

Answer. The direction of ∇f is the direction in which f increases most rapidly. The rate at which f increases most rapidly is $|\nabla f|$.

6. Find the directional derivative of $f(x, y, z) = x^2yz^3 + xy - z$ at the point (1, 1, 1) in the direction indicated by the vector (1, 2, 3).

Answer. $D_{\mathbf{u}}f = \langle 3, 2, 2 \rangle \cdot \langle 1, 2, 3 \rangle / \sqrt{14} = 13 / \sqrt{14}.$

7. Suppose $P(x, y, z) = x^4y - x^2y^3 + y \sin z$ gives the pressure at each point (x, y, z). At the point $(2, 1, \pi/4)$, in what direction does the pressure decrease most rapidly? Give your answer as a vector that points in the correct direction.

Answer. The direction of maximum decrease is given by $-\nabla P = \langle -28, -4 - \sqrt{2}/2, -\sqrt{2}/2 \rangle$.

8. The point (1, -2, 4) is on the surface described by $z = x^2y^2 + y \ln x$. Find a vector in one of the two possible directions to go from this point to stay on the level curve z = 4.

Answer. The gradient vector is $\langle 6, -4 \rangle$, so a vector in one of the two desired directions is $\langle 4, 6 \rangle$.

9. Find all critical points for $z = x \sin y$ and classify them as local maximum points, local minimum points, or saddle points.

Answer. The partial derivatives are

$$f_x = \sin y \qquad f_y = x \cos y \qquad f_{xy} = f_{yx} = \cos y$$
$$f_{xx} = 0 \qquad f_{yy} = -x \sin y$$

The first partial derivatives are both zero when x = 0 and $y = n\pi$, for any integer *n*. $D(0, n\pi) = -\cos^2(n\pi) = -1 < 0$, so all are saddle points.

10. Find the maximum and minimum values of $f(x, y) = x^2 - y^2$ above the curve given by $x^2 + 2y^2 = 1$.

Answer. From the second equation, $x^2 = 1 - 2y^2$, so we want to find the maximum and minimum values of $g(y) = 1 - 3y^2$ when $-1/\sqrt{2} \le y \le 1/\sqrt{2}$. g'(y) = -6y so there is a critical point when y = 0. The values of g to check are g(0) = 1 and $g(\pm 1/\sqrt{2}) = -1/2$. The maximum of f is 1 and the minimum is -1/2.