SAMPLE EXAM 3

1. Compute: $\iint_{R} x e^{x y} d A, R=[0,1] \times[0,1]$.
2. Compute: $\iint_{R} 1 / x d A, R=\left\{(x, y) \mid 1 \leq y \leq e, y^{2} \leq x \leq y^{4}\right\}$.
3. Compute: $\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y$.
4. Find the volume under $z=x^{2}+y^{2}$ and above $[-2,2] \times[-3,3]$.
5. Find the volume under $z=y^{2}-x+3$ and above the region shown.

6. Find the volume under $z=x y$ and above the region inside $r=1+\cos \theta$ in the first quadrant.
7. A flat plate has the shape bounded by the parabola $y=9-x^{2}$ and the x-axis; the density is given by $\rho(x, y)=x^{2} y$. Find the total mass and the y coordinate of the center of mass.
8. Compute: $\int_{0}^{2} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{x^{2}} y z d y d z d x$.
9. Compute: $\iiint_{R} x^{3}+x y^{2} d V$, where R is the three dimensional region in the first octant that is under $z=1-x^{2}-y^{2}$.
10. Find the mass of a hemisphere of radius 1 if the density is $\rho(x, y, z)=z$, assuming that the sphere is centered at the origin and the hemisphere is the upper half.
