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The Randomization Procedure in the Study of Categorization

of Multidimensional Stimuli by Pigeons

Walter T. Herbranson, Thane Fremouw, and Charles P. Shimp
University of Utah

Pigeons categorized rectangles varying in both height and width in an adaptation of a method
used by Ashby and colleagues for the cognitive and neuropsychological analysis of human
decision bounds for ill-defined categories. Optimal decision bounds were defined in a stimulus
space in which the point (x,y) corresponded to a rectangle with width x and height y. Four tasks
defined the following 4 optimal bounds: x =y, x = c,x =y + d, and (x — @)2 + (y — B)2 = ¢,
where a, b, ¢, d, and r were constants given by a task. Estimated decision bounds for individual
pigeons conformed approximately to the optimal decision bound in each of the 4 tasks. The
new method suggests a way to (a) integrate the disparate literature on ill-defined visoal
concepts and on optimal performances in nonhuman animals; (b) compare how humans and
nonhuman animals categotize ambiguous, multidimensional configural stimuli; {c) model how
nonhuman animals categorize naturalistic stimuli; and (d) infer that pigeons’ categorizations

of naturalistic stimuli may be remarkably close to optimal.

Nonhuman animals may face naturalistic categorization
problems that place a premium on nearly optimal perfor-
mance yet involve ambiguous stimuli that relate only
probabilistically to outcomes such as food (Stephens &
Krebs, 1986). The present experiments demonstrate a new
approach to the question of whether nonhuman animals
perform in nearly optimal ways when they confront such
visual environments with complex perceptual meaning and
ambiguous historical implications.

A theme commonly discussed in evolutionary biology is
whether much naturalistic behavior is “optimal.” This
evolutionary theme has not always been explicitly reflected,
however, in the psychology of animal learning and behavior,
For much of the 20th century, psychologists studying
nonhuman animal learning chose instead to focus on adap-
tive mechanisms such as the law of effect and associative
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learning. The development of probablistic and statistical
approaches to leaming (Brunswik, 1939; Estes, 1950} helped to
lead researchers back to asking how the choice behavior of
nonhuman animals was or was not optimal (Graf, Bullock, &
Bitterman, 1964; Shimp, 1966, 1969, 1973). At about the
same time, behavioral economists began to examine the role
of optimality in nonhuman animal behavioral models of
economic theory (L. Green & Kagel, 1987; Rachlin, Bat-
talio, Kagel, & Green, 1981; Staddon & Ettinger, 1989).
Furthermore, behavioral ecologists began to formalize the
role of optimality in foraging and caching behavior (see the
review and analysis by Stephens & Krebs, 1986). For these
and other reasons, the idea of optimality often appears in
discussions of nonhuman animal behavior (Staddon, 1992).
We see this as an advance because we feel that, although it is
true that the idea of optimality can be grotesquely overex-
tended (Gould & Lewontin, 1979), as was done perhaps to
the greatest degree possible by Dr. Pangloss in Voltaire’s
Candide, a carefully qualified use of descriptive notions of
optimality can be useful (Dennett, 1987).

It is probably safe 1o say that behavioral biologists and
animal learning theorists agree that optimality is an idea
worth examining and that an animal’s past experience can
often assist it in meeting the natural world’s challenge of
favering nearly optimal performance while providing only
ambiguous stimuli. They seem to agree further, if only
implicitly (Herrnstein & de Villiers, 1980; Tinbergen, 1960),
that one way in which an animal might benefit from experience is
to learn to see specific visual stimuli as exemplars of general
categories. A categorization process could simplify the
problem of responding optimally to all the innumerable
exemplars of a broad visual category. That is, there may be
an inherent link between optimal behavior and categoriza-
tion. However, this link has gone largely unexamined in
research on the behavior of nonhuman animals.

Linking optimality and categorization has been difficult
partly because the quantitative structure of naturalistic visual
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categories is unknown. We know that animals, especially
birds, can learn naturalistic visual concepts such as “fish’ or
“not fish” that defy analysis in terms of defining features
and that instead conform to the idea of “family resem-
blance” (Herrnstein & de Villiers, 1980:; Herrnstein &
Loveland, 1964; Titsumori, 1996; Jitsumori & Yoshihara,
1997; Rosch & Mervis, 1975; Wittgenstein, 1953). How-
ever, how to more generally describe the quantitative
structure of naturalistic visual concepts has been unclear,
and available information is based on methodology that does
not immediately lend itself to analysis in terms of quantita-
tive measures of optimal performances. Researchers have
not been able to indicate, for example, the degree to which a
bird’s categorizations of visual stimuli as exemplars of the
categories fish or not fish, or as exemplars of the categories
of prey or predator, are optimal. Indicative of this gap
between the literatures on optimality and naturalistic con-
cepts is that neither the word concept nor category appears
in the subject index of volumes on foraging and optimal
foraging (Commons, Kacelnik, & Shetttleworth, 1987; Ste-
phens & Krebs, 1986), and the literature on naturalistic
visual concepts was not cited in a fairly recent special issue
on behavioral economics of the Journal of the Experimental
Analysis of Behavior (November 1995). Correspondingly,
neither the word optimality nor maximizing appears in the
subject index of volumes on nonhuman animal discrirnina-
tion and perception (Berkely & Stebbins, 1990; Commons,
Hermstein, & Wagner, 1983; Stebbins & Berkely, 1990).

In short, the extensive literatures on optimality and on
naturalistic visual concepts in nonhuman animals are scarcely
linked at all. In fact, how even to begin to link these
literatures has been unclear. Moreover, except for some
notable success in applying signal-detection theory (D. M.
Green & Swets, 1974) w stimulus control (Davison &
McCarthy, 1988; Nevin, 1981; Wixted, 1993), there have
been few attempts to conceptually integrate choice behavior
and stimulus control. Thus, Davison and McCarthy (1988)
noted that “there has been little regard paid to the role of
controlling stimuli in matching research” (p. 216).

Sharply contrasting with this animal literature, the human
literature provides well-established method and theory by
which one can see how human performance approximates
optimality in tasks involving ill-defined visual concepts.
Ashby and his colleagues have developed and used to good
effect one such method (Ashby & Gott, 1988; Ashby & Lee,
1991; Ashby & Maddox, 1992; Maddox, Filoteo, Delis, &
Salmon, 1996). The method, sometimes called the “random-
ization procedure,” can be viewed as a generalization and
application of signal-detection theory (D. M. Green &
Swets, 1974) and of multidimensional scaling theory
(Shepard, 1964) to the notion of ill-defined concepts. At the
same time, the method may be viewed as a much generalized
probability-learning procedure (Estes, 1964; Estes, Burke,
Atkinson, & Frankmann, 1957), with metric and configural
properties of stimuli given added attention.

Ashby and his colleagues have used the randomization
procedure to study how humans categorize multidimen-
sional stimuli. A standard version of their task requires a
subject 1o categorize stimuli varying in two dimensions,

such as rectangles varying in height and width. Stimuli are
drawn from two categories that overlap in the sense that any
rectangle can in principle belong to either category. Nearly
all stimuli, however, are more likely to belon g to one
category than to the other. For example, in one typical task,
rectangles that are higher than they are wide are more likely
to belong to one category, and rectangles that are wider than
they are high are more likely to belong to the other category.
A subject’s task is to assign each stimulus to one of the two
categories.

Figure 1 shows a summary of this version of the task. The
top panel shows two ill-defined categories, A and B, in the
form of two overlapping normal bivariate distributions. The
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Figure 1. Top pancl: Bivariate approximately-normal distribu-
tions represent likelihoods with which rectangles are sampled from
either of two ill-defined (overlapping) categories, A and B. A
rectangle is represented in the stimulus space as a point with
coordinates equal to the corresponding width and height. A pigeon
successively categorizes individual rectangles and is reinforced if a
choice corresponds to the category, either A (left key) or B (right
key), from which a rectangle was sampled. One arbitrary contour of
equal likelihood is shown for each category. Each contour consists
of all points corresponding to rectangles equally likely to be
sampled from a category. Bottom panel: Arbitrary contours of
equal likelihood for each category and the corresponding linear
optimal decision bound, x = y, according to which a rectangle
should be categorized as an A or as a B, depending on whether the
rectangle is taller than wide or wider than tall, respectively.
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space over which the distributions are defined is typically
referred to as the “stimulus space,” in which each point
represents a particular two-dimensional (2-D) stimulus, such
as a rectangle with specified width x, and height y, and with
the third coordinate, z, corresponding to the probability with
which the rectangle will occur given a particular category.
Note that in this basic case, each variable, height, and width
in each distribution has the same variance and that the
covariance of each distribution is equal to zero. The top
panel of Figure 1 also shows two equal-likelihood contours,
each of which conveniently summarizes a bivariate normal
distribution by showing points corresponding to stimuli that
are equally likely to occur given a particular category. The
height at which the contours are drawn in Figure 1 is
arbitrary; at any height, the collection of equally likely
points for a given category forms a circular contour. The
bottom panel shows two such equal-likelihood contours,
along with the optimal decision bound, the line formed by
the points corresponding to rectangles that are equally likely
lo occur given either category. For the task displayed in
Figure 1, the optimal decision bound is a straight line with
slope of 1.0, according to which stimuli are categorized
optimally when a stimulus on one side is categorized as
belonging to Category A and a stimulus on the other side is
categorized as belonging to Category B (Ashby & Gott,
1988; Ashby & Lee, 1991 Ashby & Maddox, 1992; Maddox
& Ashby, 1993).

The position and shape of an optimal decision bound in
this 2-D space depend on the frequencies of occurrence of
the stimuli in the two categories, particularly on whether the
variances and covariances of the two bivariate distributions
are similar. For the present experiments, it is important to
note that when the covariances of the two bivariate distribu-
tions are equal to zero, the optimal bound is linear or
quadratic depending on whether the variances of the two
categories are equal or unequal, respectively (Ashby, 1992;
Ashby & Maddox, 1998; Maddox & Ashby, 1993).

A person categorizing stimuli on the randomization task
produces, over a sequence of trials, an empirical counterpart
to the theoretical stimulus space shown in Figure 1; an
empirical stimulus space shows which stimuli were sampled
from each category and shows how a person categorized
each one. Just as one can obtain the optimal decision bound
from the theoretical distributions in Figure 1, one can
estimate a decision bound from an observer’s actual perfor-
mance. (The details of this estimation procedure are pro-
vided later.) These estimated decision bounds are descrip-
tively accurate and demonstrate that humans are remarkably
good at learning to approximate optimal decision bounds
when they categorize several different types of ambiguous
stimuli (Ashby & Gott, 1988; Ashby & Maddox, 1992;
Maddox & Ashby, 1993). Human observers have generally
approximated optimal decision bounds to an impressive degree
in a variety of tasks with linear and even some nonlinear optimal
decision bounds (Ashby & Maddex, 1992, 1998).

In summary, the randomization procedure developed and
investigated by Ashby, Nosofsky, and many of their col-
leagues offers attractive possibilities for linking the dispar-
ate literature on categorization and on optimization in

nonhuman animals, and our goals in the present two
experiments were to exploit some of these possibilities. In
particular, we sought to determine whether categorization by
nonhuman animals can be described in terms of decision
bounds and, if so, whether the bounds approximate optimal
solutions to problems that are ill-defined, complex, abstract,
and multidimensional. We also sought to explore a sugges-
tion of Ashby and his colleagues that the procedure may
serve as a tractable model for studying the role of optimality
in naturalistic categorization.

General Method
Animals

Eight male White Carneaux pigeons (Columba livia) were
obtained from the Palmetto Pigeon Plant (Sumter, SC). Each was
maintained at approximately 80% of its free-feeding weight, with
supplemental grain provided as needed in home cages after daily
experimental sessions. Birds were housed individually, in standard
pigeon cages with free access to water and grit, in a colony room
with a 14:10 light-dark cycle. All experimental sessions took place
during the light cycle at approximately the same time 5—6 days a
week.

Apparatus

The three experimental chambers had internal dimensions of
38 X 345 X 50 cm (1 X w X h). Each chamber had three clear
plastic response keys (3.5 X 3.5 cmi) mounted in a horizontal row
within a clear Plexiglas viewing window (17 X 7 cm; w X h). The
viewing window itself was mounted within the front wall of the
chamber, with its bottom 20 cm above the chamber floor. A 14-in,
(16.54-cm} computer monitor (either CTX or Relisys) was 9 cm
behind this front wall. Each monitor and experimental chamber
was interfaced via digital inputfoutput cards (Metrabyte) either to
one of two IBM PS/2 Model 80 computers or to an IBM PS/2
Model 95 computer, which controlled all experimental contingen-
cies and recorded the data. A super MVGA video adapter card
(Colorgraphics Communications) was used to keep the monitor in
the chamber interfaced to the Model 95 computer blank before and
after experimental sessions. A splitter amplifier box (Colorgraphics
Communications) was used for the same purpose for the other two
boxes. A fan and white noise helped to mask extraneous sounds. A
digital sound level meter held at approximately the position of a
bird's head in each of the three chambers gave a reading (C scale)
varying from approximately 88 to 93 dB.

Procedure
Pretraining

Pigeons were pretrained in sessions consisting successively of
habituation to the chamber, magazine training, and autoshaping to
attain consistent responding on each key. Stimuli used for autoshap-
ing were 2.4 ¢m square blocks of various colors (green, red, or
blue} appearing on the computer monitor behind the response keys.

Stimuli

Stimuli were outlines of rectangles formed by yellow lines
approximately 0.3 cm thick on a black background and were
centered horizontally and vertically behind the middle response
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key. Across trials, rectangles varied both in height and width. Both
the height and width of a rectangle could vary from 0.3 to 6.0 cm, in
0.3-cm increments. Thus, there were 20 possible heights and 20
possible widths, for a total of 20 X 20 = 400 possible different
rectangles. As in the corresponding research with humans, no effort
was made to normalize brightness across the different stimuli. On
each trial, the computer randomly chose one of the two equally
likely stimulus categories, A or B. Each category had a correspond-
ing 2-D distribution, approximately bivariate normal, associated
with it. Once the stimulus category for a trial was chosen, height
and width were then randomly and independently chosen from the
cotresponding approximately normal bivariate distribution. Any
value could be selected for either dimension of a stimulus, given
either category, so that any of the 400 possible stimuli could be
selected given either category. The task in this sense was “ill-
defined.” However, most rectangles were more likely to appear
given one category than given the other, so that for most rectangles,
a particular response optimized the likelihood of reinforcement.

Trial Organization

Each of a session’s 95 trials consisted sequentally of an
orienting cue, stimulus presentation, a categorization response,
cither reinforcement or a correction procedure, and an intertrial
interval. Each trial began with an orienting cue (a 2.4 X 2.4 cm
green block) presented behind the center key, The first center-key
peck to occur after 1 s elapsed turned off this cue. The orienting cue
was then replaced with a rectangle randomly chosen as described
earlier. A peck to the center key after the rectangle had been
displayed for 2 s (Birds 4-8) or 3 s (Birds 1-3) illuminated a solid
block (2.4 X 2.4 cm) behind each of the two side keys.! The left
block was red and the right block was blue. A bird then categorized
the rectangle as an exemplar of Category A or Category B, in the
sense that a choice of the left key was reinforced if the rectangle
had been generated by Category A and a choice of the right key was
reinforced if the rectangle had been generated by Category B.

If a choice corresponded in this way to the category from which
the rectangle was sampled, mixed grain was presented in a hopper
located beneath the Plexiglas window. The hopper was directly
below the center key. Hopper presentation time varied across birds
from 1.4 to 3.0 s to accurately maintain individual deprivation
levels. After reinforcement, there was a 5-s intertrial interval,
during which the monitor was blank.

If a response did not correspond to the category from which the
stimulus was sampled, a 10-s correction interval began. This
interval was signaled by the houselight flashing on and off every
0.5 5. {(Otherwise, the houselight was on throughout the entire daily
session.) Any subsequent errors caused the correction procedure to
continue to recycie, with the same rectangle, until the correct
response was given. Only the initial choice response in a trial was
recorded and included in data analysis. Any subsequent errors in
the correction procedure were excluded.

Experimental Conditions

The structure of each of the two experiments was the same: each
consisted of a first task, a second task, and a replication of the first
task. Stable performance in each task was defined as 5 consecutive
days over which the percentage of correct responses varied
nonmonotonically and within a range of no more than 10%.
Conditions were always continued for some time after performance
met this criterion, mostly because of our conservative attitude; we
did not wish to underestimate the possible impact of long-term
drifts in performance in a new procedure.

Procedure for Estimating Decision Bounds

We had two goals: (a) to determine the practical utility of a
decision-bound approach to the problem of how nonhuman animals
learn to categorize exemplars of ill-defined categories and (b) to
determine whether animals’ bounds, if any could be estimated,
were approximately optimal. This goal required us to estimate best
fitting bounds for each animal for each task. We imposed con-
straints on this estimation procedure to make the computational
task manageable. In the three tasks for which the optimal bound
was linear, we limited the search to linear estimations, In the one
task for which the optimal bound was nonlinear, in fact a circle, we
limited the search to linear and circular bounds. In general, our goal
in these initial studies was not to find which of all possible,
arbitrary polynomiials best described each individual bird’s choices
in the stimulus space for each task but instead to discover whether a
bird’s bound in a task approximated the optimal bound for that task.

The method for finding best fitting decision bounds for indi-
vidual birds worked as follows. For each linear task, each possible
linear decision bound that passed through the stimulus space was
compared with each bird’s performance over the last 5 days of a
task. The exhaustive search used a step size of 0.05 for hoth slope
and intercept, so that nearly 1 million potential decision bounds
were computed. This step size was the smallest practical value
given the computational constraints and given the size of the
stimulus space. For the nonlinear {circular) optimal bound in Task 2
of Experiment 2, we similarly conducted an exhaustive search of
all possible circular decision bounds, with center (a, b) and radius r.
The values of all three parameters were varied in increments of
0.25. Possible values for @ ranged along the x-axis from 0 to 12 for
b they ranged aleng the y-axis from 10 to 20, and for r they ranged
from O to 20.

The best fitting bound was that which accounted for more
individual choices than any other bound. That is, it was the bound
that maximized the number of individual categorizations of rect-
angles that were the same as a bird’s categorizations. Most searches
produced more than one best fitting solution: The estimated
decision bound was usually not unique. We provided for each bird
in each task the number of best fitting solutions and the envelope of
best fitting bounds within which all the others fell. Any estimated
best fitting decision bound not explicitly described fell between the
extremes represented by this envelope.

Experiment 1

Humans quickly learn to categorize exemplars in the
randomization task such that their estimated decision bounds
approximate linear decision bounds (Ashby & Gott, 1988).
We therefore began by determining the extent to which
pigeons also can master tasks involving different linear
optimal decision bounds. We began with tasks similar to
those used in initial experiments with human subjects, with
our Tasks 1 and 2 loosely patterned after Experiments 1 and
2 in Ashby and Gott (1988).

!'The observation interval was 0 s immediately after initial
shaping, and thereafter for the first few birds to be trained on the
categorization procedure, this interval was gradually increased to
3 s to ensure adequate exposure duration of the stimuli. As more
birds were trained, it became clear that a shorter, 2-s observation
period was adequate.
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Task 1 ( “Taller Versus Wider” or
“Divided Attention,” Bound: x = y)

We began with a task in which the two categories of
rectangles could be discriminated optimally, in terms of
plain English, as rectangles that were either “taller than
wide” (Category A) or “wider than tall” (Category B). Any
rectangle with a height greater than its width was more likely
to belong to Category A, and any rectangle with a width
greater than its height was more likely to belong to Category
B. The variances of the two bivaniate, approximately normal
distributions that defined the two categories were equal, and
their covariances were equal to zero (as in Figure 1, top
panel). The optimal decision bound was therefore a straight
line with a slope of 1.0 and an intercept of 0 (as in Figure 1,
bottom panel}. That is, the optimal bound in the stimulus
space was the straight line x = y, with x and y being equal to
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Figuyre 2. Task 1 of Experiment 1. In this task, an optimal
response consisted of categorizing a rectangle as belonging to
Category A or B if it was talier than wide or wider than tall,
respectively. Top panel: Two contours of equal likelihood are
shown for each category, A and B. For each category, the smaller
and larger circular contours are 1 and 2 $Ds from the mean (filled
circle) of the corresponding normal bivariate distribution, respec-
tively. The solid line represents the optimal decision bound, x = y.
Arbitrary screen units along the horizontal and vertical axes
correspond to increments of 0.3 cm. Bottom panel: The two
exemplars corresponding to the means of Categories A and B,
respectively. Line thickness and rectangle size are drawn to scale.

the width and height of a rectangle, respectively. The top
panel of Figure 2 shows this optimal bound in the context of
the overlap between the two ill-defined categories, with
overlap shown in terms of two annuli, located at 1 and 2 $Ds
from the center of each category. The bottom panel of Figure
2 shows the two rectangles corresponding to the centers of
the two categories, A and B, respectively.

Simple as this optimal bound is when expressed math-
ematically, it may nevertheless require relatively complex
processing of stimulus information. If the basic perceptual
dimensions are height and width, it requires integration of
information from these two stimulus dimensions.2 If an
animal either cannot or does not divide attention between the
two dimensions, and accordingly does not integrate informa-
tion, including information about the values of both dimen-
sions of rectangles and about corresponding sampling likeli-
hoads, then categorization cannot be optimal.

Task 2 ( “Wider Versus Narrower” or
“Selective Attention,” Bound: x = c)

If pigeons were able to divide their attention and accu-
rately integrate information across the two dimensions when
the optimal bound required them to do so, could they learn
also to refrain from integrating information and to ignore
one dimension if the optimal bound required them to do so?
We arranged a second task to evaluate this possibility. The
second task used the same rectangles as the first task, but
now only one dimension contained relevant information
about category membership. The task required the birds to
attend selectively to the relevant width dimension and to
ignore information in the randomly varying, irrelevant
height dimension. The optimal decision bound was the
vertical straight line, x = ¢, where any rectangle with a width
less than, or greater than, the value ¢ should be categorized
as belonging to Category B or Category A, respectively.
(There were no points on the line because it was located at
¢ = 10.5.) The top panel of Figure 3 shows a summary of
this task, and the bottom panel shows the two rectangles

21t should be noted in passing that in the human literature there
is an unresolved issue concerning how physical dimensions of
rectangles correspond to underlying psychological dimensions.
Krantz and Tversky (1975) suggested, for example, that humans
may perceive rectangles in terms of size and shape rather than
length and width, although even these suggested psychological
dimensions were less than ideal because they interacted and were
therefore not independent. Other researchers have continued to
suggest that the physical dimensions of length and width ad-
equately represent underlying psychological scales because with
proper scaling, they lead to independent psychological dimensions
{Borg & Leutner, 1983). Although this issue remains unresolved in
the human literature, it is essentially uninvestigated in the nonhu-
man animal literature. Therefore, throughout this article, we
assume for simplicity that the psychological dimensions of rect-
angles are length and width, but the reader is advised that they may
have been some other dimensions, such as size and shape. In any
case, as will be explained later, the obtained results make this issue
moot for the present experiments,
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Figure 3. Task 2 of Experiment 1. In this task, an optimal
response consisted of categorizing a rectangle as belonging to
Category A or B if it was wider or narrower than a fixed criterion
width, respectively. Top panel: Two contours of equal likelihood
are shown for each category, A and B. For each category, the
smaller and larger circular contours are 1 and 2 $Ds from the mean
(filled circle) of the corresponding normal bivariate distribution,
respectively. The solid line represents the optimal decision bound,
x = ¢ = 10.5. Arbitrary screen units along the horizontal and
vertical axes comrespond to 0.3 cm. Bottom panel: The two
exemplars corresponding to the means of Categories B and A,
respectively. Line thickness and rectangle size are drawn to scale.

corresponding to the centers of the two Categories, B and A,
respectively.

In addition to this difference between the first and second
tasks in terms of selective and divided attention, the tasks
were also different in terms of memory requirements. The
optimal bound in Task 1 was defined in terms of a
comparison between a rectangle’s height and width. The
optimal bound in Task 2 was defined in terms of a
comparison between a rectangle’s width and a fixed criterion
width, ¢. In terms of these definitions of the tasks, the basis
on which optimal categorization depended was therefore
literally present in the first task because both height and
width were intrinsic physical features of the stimuli, but not
In the intervening task, because the criterion ¢ was not part
of the displayed stimuli. Optimality in this second task
therefore required an animal to behave as though it learned,
remembered, and compared the criterion with each rectan-
gle’s width. The selective attention task, x = ¢, in this sense

had a memory demand absent from the first, divided
attention task.,

In summary, for each of two different tasks, in Experiment
1 we examined whether pigeons could learn to categorize
multidimensional stimuli in a manner that approximated
optimal decision bounds. Our goal here was not to compare
performances across different tasks, which is a topic for
future research, but to compare a bird’s performance with
the corresponding optimal bound.

Method
Animals and Apparatus

The animals were 4 experimentally naive White Carneaux
pigeons (Columba livia). The apparatus was the one described in
the General Method section.

Procedure

The procedure conformed to that described in the General
Method section. Recall that Task 1 was replicated after the
completion of Task 2 to determine the extent to which a once-
learned bound could be relearned following the learning of some
other bound. Specific details are as follows.

Task I (bound: x = y) and its replication. In'Task 1, the heights
of Category B rectangles and the widths of Category A rectangles
were drawn from identical distributions with means of 7 screen
units (2.1 ¢m) and standard deviations of 3 units (0.9 cm).
Similarly, the widths of Category B rectangles and the heights of
Category A stimuli had identical means of 14 screen units (3.9 cm)
and standard deviations of 3 (0.9 cm).

Categorizing rectangles according to the optimal decision bound
in Task 1, a straight line with a slope of 1.0 and an intercept of 0
would result in reinforced choices on an average of approximately
88% of the trials. Expected accuracy could not reach 100% because
the overlap between bivariate distributions for the two categories
ensured that some stimuli fell on the “wrong™ side of the optimal
decision bound. In Task 1, 12% of each distribution fell on the
wrong side of the optimal bound, that is, opposite the mean of its
distribution. Therefore, on the average, 12% of choices to the
“better,” or optimal, key would not be reinforced if a bird were
choosing according to the optimal bound.

Task 2 (bound: x = c). In Task 2, the widths of Category A
stimuli were determined by an approximately normal distribution
with a mean of 14 (3.9 cm) and a standard deviation of 3 (0.9 cm),
and the widths of Category B stimuli were determined by a
distribution with a mean of 7 (2.1 cm) and a standard deviation of 3
(0.9 ¢m). For both categories, height was drawn from identical
distributions with means of 10 (3.0 ¢cm) and standard deviations of
3 (0.9 cm). Height was therefore not diagnostic of the category
from which a rectangle was drawn. To review, the width of a
stimulus in the second task was generated by the two categories in
the same way as in the first task, but height varied randomly, having
ne impact on category membership, and Category A stimuli were
usually wider than Category B stimuli.

The optimal bound for Task 2, a vertical straight line, was
located at a point midway along the horizontal axis, corresponding
to a width of ¢ = 10.5. Behavior conforming to this bound would
have produced on the average an optimal level of accuracy of
categorization of 82% because 18% of each distribution fell on the
“wrong” side of the optimal decision bound. The response keys
corresponding to Categories A and B were switched between the
first and second tasks to reduce similarity in optimal bounds
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between Tasks 1 and 2 (see Figures 2 and 3). Specifically, in Task 2,
A and B were switched from the left and right keys, respectively, to
right and left. (They were switched back again in the replication of
Task 1.) This shift ensured that high levels of accuracy in the
second task were attributable to learning the new task, not merely
to behavior persisting from the first task. If a bird continued in the
second task to use exactly the same decision bound, and the same
assignment of left and right keys to categories, the bird would have
been correct (its choices would have been reinforced) only 27% of
the time. If the bird had used the same decision bound, x = y, but
had switched assignments of keys to categories, 73% of the choices
in the long run would have been correct.

Because the second task was designed to require a bird to
compare each rectangle’s width with remembered criterion width,
¢, we ook steps to remove physical cues in the environment that
could serve as a criterion, In particular, stimuli were centered on the
video monitor (o reduce the effectiveness of a strategy based on the
stimulus simply covering a certain location on the screen. This
centering presumably ailso helped to keep subjects from using
width cues that might have been available along the edges of the
chamber and also kept stimuli as far as possible from the edges of
the screen.

Results

The procedure Ashby and his colleagues have developed
has the virtue that it encourages the analysis of behavior of

individual organisms. There are occasions when group
averages arc illuminating (Estes, 1956), but the analysis of
decision bounds apparently is not one of them; averaged
decision bounds are particularly likely to misrepresent actual
behavior of individual subjects (Ashby, Maddox, & Lee,
1994; Maddox & Ashby, 1993, 1998). Therefore, our focus
was on individual performances. To reduce warm-up effects,
we excluded performance on the first five trials of each
session from all data analyses.

Acquisition and Overall Accuracy

Table 1 shows that each bird reached the criterion for
stable performance within a range across individual birds of
11-28 days in Task 1, 10-31 days in Task 2, and 15-29 days
in the replication of Task 1. By the standards of rate of
acquisition in some other experiments using complex stimuli
and probabilistic reinforcement, this was moderately rapid
learning (e.g., see Shimp, Long, & Fremouw, 1996). Train-
ing was continued after the arbitrary stability criterion was
met merely to verify that stability was relatively permanent
once it was established.

The top row of Table 1 shows the percentage of trials on
which a bird chose the key more likely to lead to reinforce-
ment (i.c., the “better,” or optimal, key). This percentage

Table 1
Experiment 1: Accuracy and Amount of Training
Task Bird1 Bird2 RBird3 Bird6* Average
Task lix =y

% of choices to the optimal or “better”” key 86.3 915 87.3 86.4 87.9
% of choices accounted for by height 78.1 81.2 81.9 81.1 8.6
% of choices accounted for by width 80.9 82.6 77.6 79.1 80.0
% of choices that were reinforced 80.9 83.8 84.5 83.1 83.1
% of choices expected to be reinforced given

optimal performance 88.0 88.0 88.0 88.0 88.0
Day of training on which stability criterion was

first met 18 16 28 11 18.3
Total days of training 91 62 57 31 60.3

Task 2: x = ¢

% of choices to the optimat or “better” key 75.8 82.2 79.8 71.3 71.3
% of choices accounted for by integration® 720 700 701 632 68.8
% of choices accounted for by size 70.6 79.0 78.0 75.2 5.7
% of choices that were reinforced 68.2 4.7 69.8 67.6 70.1
% of choices expected to be reinforced given

optimal performance §2.0 82.0 82.0 82.0 820
Day of training on which stabitity criterion was

first met 31 16 10 11 17.0
Total days of training 60 55 55 45 53.8

Replication of Task 1

% of choices to the optimal or “better” key 86.3 84.1 838 84.7
% of choices accounted for by height 78.7 778 80.0 78.8
% of choices accounted for by width 80.9 78.7 75.6 78.4
% of choices that were reinforced 82.0 80.9 81.1 81.3
% of choices expected to be reinforced given

optimal performance 88.0 88.0 88.0 88.0
Day of wraining on which stability criterion was

first met 29 15 23 223
Total days of training 34 33 41 36.0

"Data were accidentally not collected from Bird 6 on the replication of Task |

defined by the decision-bound x = y.

bintegration is
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was averaged for each task over the last 5 days of training.
Accuracy defined this way theoretically could have reached
100% if a bird chose the better key for each stimulus on each
trial. Accuracy varied across birds in Task 1 from a low of
86.3% to a high of 91.5%, with a mean of 87.9%, from
83.8% to 86.3%, with a mean of 84.7% in its replication, and
from 71.3% to 82.2%, with a mean of 77.3%, in Task 2.
There was no reliable difference in accuracy between Task 1
and its replication, demonstrating that a bound once mas-
tered and abandoned could be reestablished.

Although overall accuracy was less than perfect, in every
individual case, it also far exceeded the chance level of 50%
correct. Note, however, that above-chance performance
could be obtained in a variety of ways. Consider Task 1 and
its replication. Note that the height and width of stimuli in
Category A were on the average different from those in
Category B. Specifically, the heights of stimuli in Category
A tended to be greater than the heights of stimuli in Category
B and vice versa for width. Therefore, it would be possible
to exceed chance performance by attending to only a single
dimension. To determine how well single-dimension deci-
sion bounds accounted for the data, we calculated the
percentage of responses accounted for by the best possible
single-dimension decision bound for each of width (x = ¢)
and height (y = ¢). Table 1 shows that for each bird the
optimal decision bound (x = y) accounted for performance
better than did either single-dimension decision bound.

Alternatively, in Task 2, optimal performance required
attention to a single dimension, width. However, above-
chance performance could result even if a bird attended
equally to height and width, as was required for optimal
performance in Task 1. To investigate the possibility that
birds did not attend selectively to a single dimension and
instead divided attention between two dimensions as in Task
1, we calculated the percentage of responses accounted for
by the decision bound from Task 1 (x = y) and by the other
decision bound that distributed attention equally, x = ~y +
d (which was investigated further in Experiment 2). Table 1
shows that for each bird, the optimal selective-attention
decision bound accounted for performance better than either
divided-attention decision bound.

In summary, in Task 1, when attention to both dimensions
was required for optimal performance, birds did in fact
attend to both dimensions, Alternatively, in Task 2, on which
selective attention to a single dimension was optimali, birds
selectively attended to that dimension more than to the other.
How well they did so can be seen much more clearly in the
analysis to which we turn next.

Individual Estimated Decision Bounds

Figures 4 and 5 show stimulus spaces for 2 individual
birds for both Tasks 1 and 2. In each task, these 2 birds were
those for which the best fitting lines were best (top panel)
and worst (bottom panel), respectively. (!t so happened that
these were the same 2 birds, Birds 2 and 6, in each task.) The
criterion for “best” and “worst” was designed to reflect the
extent to which the estimation procedure generated bounds
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Figure 4. Task 1 of Experiment 1. Stimulus spaces for Birds 2
(top) and 6 (bottom) in the divided-attention condition. Points and
circles represent choices of Category A or B, respectively. Each
panel shows each of a bird’s choices over the last 5 days of the task.
Bold lines show the optimal decision bound, x = , and lighter lines
show the envelope of all best fitting estimated decision bounds.
Units along the axes correspond to 0.3 cm.

that accurately described the data. Thus, best and worst refer
to the estimated bound that accounted for the highest and
lowest number of choices, respectively. This criterion to
determine which individual stimulus spaces to present
graphically was designed to reflect the extent to which a
dectsion-bound analysis was applicable to the data and the
effectiveness of the estimation procedure, not the accuracy
with which birds’ decision bounds were optimal. The degree
to which estimated decision bounds approximated optirnal
bounds can be seen in Table 2, which shows the best fitting
bounds and the percentage of responses for which they
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Figure 5. Task 2 of Experiment 1. Stimulus spaces for Birds 2
(top) and 6 (bottom) in the selective-atiention condition. Points and
circles represent choices of Category A or B, respectively. Each
panel shows each of a bird’s choices over the last 5 days of the task.
Bold lines show the optimal decision bound, x = 10.5, and lighter
lines show the envelope of all best fitting estimated decision
bounds. Units along the axes correspond to 0.3 cm.

accounted for all birds in each task. Circles and points in
Figures 4 and 5 show individual left and right responses,
respectively, over the last 5 days of a task. There often were
muitiple presentations of the same stimulus, so correspond-
ing symbols were shifted slightly to improve clarity in the
figures.

Task I (bound: x = y). Table 2 shows that the percent-
age of choices accounted for by the best fitting lines ranged
from 86.4% to 90.8%, so that the estimated straight lines
generally cffectively summarized what the birds actually

did.? Each best fitting bound resembled the optimal bound
by having positive slopes, which ranged over birds from
0.60 to 1.65 and which were approximately centered around
the optimal value of 1.0. The estimated intercepts ranged
from —3.85 to 6.20 and again were centered roughly around
the optimal value of zero. The estimated decision bounds in
these ways at least roughly approximated the optimal bound.
Figure 4 shows that in the case of Bird 2, the approximation
was truly remarkable.

Task 2 (bound: x = c). Because the optimal slope for
Task 2 was infinite in terms of x, we instead report the
function in terms of y, for which the optimal slope was 0 and
the optimal intercept was 10.5. Table 2 shows that three of
the four estimated best fitting decision bounds gave reason-
ably good fits to the optimal bound, with 80.0%-84.9% of
the birds’ choices being correctly described. Bird 6, the
worst case, is an especially interesting exception to which
we return later in the Discussion section. Estimated slopes
for the other 3 birds ranged from —0.35 to —0.05. The
estimated intercepts, excluding Bird 6, ranged from 9.40 to
13.40 and were roughly centered around the optimal value of
10.50. Figure 5 shows that Bird 2’s estimated decision
bound closely conformed to the optimal bound, and Table 2
shows that Birds 1 and 3 were not far from optimal. Bird 6,
however, as we discuss later, apparently performed this task
in an entirely different way. It is important that even for Bird
6, a linear function described the data reasonably well.

Replication of Task 1. Task 1 was replicated to deter-
mine whether a decision boind once mastered can be
recovered after a bird has mastered some other bound.
Estimated decision bounds (see Table 2) summarized the
data about as well as in Task 1, and the percentage of
responses correctly described ranged from 84.7% 10 87.3%.
Estimated slopes varied from 0.50 to 2.70, which were again
positive, like the optimal slope of 1.0, but which were
slightly more variable than for the original performance.
Intercepts varied from —20.00 1o 5.45, which also were
somewhat more variable than in the original task. Neverthe-
less, Table 2 shows that the estimated bounds were reason-
ably close to the optimal bound. The replication was
generally slightly less successful than the original task in
producing behavior similar to the optimal decision bound,
but recall that the difference in accuracy was not reliable, so
that whatever long-lasting interference was caused by an
intervening task was slight.

3 Readers may notice in a few cases that the optimal decision
bound accounted for a larger percentage of choices than the *‘best
fitting” bound, as in the case, for example, of Bird 2. This seeming
anomaly was an artifact of our methods. When a stimulus fell on
the optimal bound, there was no optimal response because either
cheice was equally likely to be correct. Therefore, choices to such
stimuli were excluded from the analysis of accuracy to better reflect
performance on trials when an optimal cheice existed. On the other
hand, it was preferable for best fitting estimated bounds to be based
on as many choices as possible, so the searches for these rules were
based on all choices. Therefore, the trials on which accuracy and
best fitting bounds were based were slightly different, and sampling
could produce the anomalous result described above.
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Table 2

Experiment 1: Best Fitting Decision Bounds

Task

Bird1 Bird2 Bird 6*

Task l:x =y

% of choices accounted for by best fitting straight lines 873 90.8 87.3 86.4

No. of best fitting lines

15 28 6 39

Parameter values from most extreme best fitting straight

lines
Slope (optimal = 1.00)

Intercept (optimal = 0.00)

Task 2: x = ¢

1.50 0.75 0.65 0.60
1.65 0.50 0.75 1.15
—385 0.80 5.00 020
—2.80 2.45 6.20 3.95

% of choices accounted for by best fitting straight lines 80.0 84.9 81.6 74.9
1

No. of best fitting lines

Parameter values from most extreme best fitting straight

lines
Slope (optimal = .00)

Intercept (optimal = 10.5)

Replication of Task 1

—-0.15  —-035 -035 -0095
—0.05 — — —0.85
9.40 13.20 1255 18.40
10.25 13.40 — 19.45

% of choices accounted for by best fitting straight Iines 87.3 849 84.7

No. of best fitting lines

5 18 28

Parameter values from most extreme best fitting straight

lines
Slope (optimal = 1.00)

Intercept (optimal = 0.00)

1.25 2.55 0.50

— 270 0.95
—4.50 2000 -—-040
—430 -18.10 5.45

Note. Dashes indicate that the best fitting parameter was unigue.
“*Data were accidentally not collected from Bird 6 on the replication of Task 1.

Probe stimuli. Finally, we address a common issue in
nonhuman animal research on the nature of concepts. That
issue is the question of how animals respond to novel test
stimuli. Generalization of performance to novel exemplars is
often said to cause problems for theoretical accounts empha-
sizing control by specific stimulus—response pairs (e.g., see
Fremouw, Herbranson, & Shimp, 1998; Honig, 1993; Wright,
1993). This kind of transfer test is not ordinarily conducted
in the experiments reported in the human literature on which
the present experiments are based. A chief reason why is that
the stimulus sets are enormous and most stimuli have
therefore seldom if ever been seen before. In the present
case, stimulus set size was not as huge as in the correspond-
ing human literature, but the number of stimuli was still
large. Therefore, many stimuli were seen only rarely. We can
therefore approximate a task with novel test probes by
examining accuracy on trials with stimuli only rarely seen.
We defined “probe” stimuli in the terminal 5 days of an
experiment to be those that a bird had not seen for at least the
previous 4 days. Figure 6 shows responses to stimuli that
appeared on the final day, but on no previous days within the
last 5 days of an experiment. Thus, these stimuli had not
been seen by subjects for at least 4 days or 304 trials and
possibly had never been seen at all. We calculated accuracy
on these trials for the birds for which results are displayed in
Figures 4 and 5. For both birds, performance on these probe
stimuli was well above chance: In Task 1, Bird 2’s accuracy

was 23 optimal out of 26 (88.5%), and for Bird 6 it was 19 of
24 (79.2%). Both accuracies are reliably above chance and
in fact resembled corresponding overall performances of
91.5% and 86.4% for Birds 2 and 6, respectively. In Task 2,
the outcome was similar, with 16 of 21 (76.2%) and 17 of 24
(70.8%) responses being optimal. Again, these compare well
with the corresponding overall performances of 82.2% and
71.3%. Thus, accuracy to rarely seen stimuli was only
slightly worse, if at all, than overall accuracy.

Discussion

Recall our two chief questions: Are the data interpretable
in terms of decision bounds? If so, are the estimated decision
bounds roughly the same as the optimal bounds? Note that in
principle, it would be easy for neither of these questions to
be answered: Estimated decision bounds could describe a
paltry fraction of the choices, and, even if estimated decision
bounds could be found that described most of the choices,
therc is no reason why they would have to approximate
optimal bounds. What, then, are the answers to our two
questions?

The answer to the first question is simple: Estimated
decision bounds for every bird in each task described a
reasonably high percentage of choices. The answer to the
second question is correspondingly simple: Estimated deci-
sion bounds approximated optimal bounds in 10 of 11
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Figure 6. Responses to probe stimuli. Stimulus spaces for Birds 2 (left panels) and 6 (right panels)
for Tasks 1 (top) and 2 (bottom}. Each panel shows responses to stimuli presented only on the final
day of the terminal 5-day periods represented in Figures 4 and 5. Bold lines show the optimal
decision bound, and lighter lines show the envelope of all best fitting estimated decision bounds for
each bird and condition. Units along the axes correspond to 0.3 cm.

individual cases, and the approximations in several cases
were impressive. In the exceptional 11th case, a bound did in
fact approximate the data, but the estimated bound did not
approximate the optimal bound. In summary, in virtually all
cases decision bounds at least roughly described the results,
thereby defining descriptive success for a decision-bound
approach to describing how nonhuman animals categorize
multidimensional exemplars of ili-defined categories.

The ability to perform approximately optimally in the
randomization task is therefore not uniquely human and
does not require linguistic competence. Ashby, Alfonso-
Reese, Turken, and Waldron (1998) have suggested that
linguistic abstractions might play important roles in how
humans approximate some optimal solutions. They have
noted that language may sometimes help and sometimes

hinder accuracy depending on whether a subject’s language
habits include a predisposition to think in terms of a bound
that is, or is not, the actual optimal bound, respectively.
Pigeons presumably do not have an elaborate symbolic
system corresponding in detail to natural language, with
which they might encode decision bounds. It will therefore
be an especially interesting issue for future rescarch to
determine whether animals can perform approximately
optimally in the randomization procedure in a manner
involving abstract strategies similar to “‘same—different
judgments” (Cook, Cavoto, & Cavoto, 1995; Wasserman,
Hugart, & Kirkpatrick-Steger, 1995), which, until relatively
recently, nonhuman animals other than primates were often
believed incapable of learning.

The successful transfer we obtained to novel stimuli
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addresses this question of whether nonhuman animals leamn
abstract strategies. Transfer to novel stimuli is often taken to
indicate that an animal has learned a general concept or rule
and indeed is virtuafly the defining feature of demonstrations
of “rules” in the nonhuman animal literature. According to
this criterion, the present experiment may have demon-
strated learning of abstract rules. However, this criterion is
not powerful enough to answer the question to the degree
one might like: There is a lively and informative dialogue in
the human literature over the question of whether a decision-
bound approach (Ashby & Lee, 1992; Ashby & Maddox,
1998; Maddox & Ashby, 1993, 1998) or a specific-
exemplars approach (McKinley & Nosofsky, 1996) is more
suitable for the randomization task, The resolution of this
dialogue is far beyond the scope of the present demonsira-
tion that the basic randomization procedure can be used
effectively with nonhuman animals. Therefore, we feel it
would be premature to decide that the pigeons in our
experiment learned anything more abstract than memories
for specific stimulus-response pairings.

Pigeons’ estimated decision bounds approximated opti-
mal bounds even though our procedure was somewhat
different from that used by Ashby and his colleagues, in
which human subjects have done so well. One potentially
important difference was in our use of the character mode,
rather than the graphics mode, to generate stimuli, which
precluded the enormous number of possible stimuli human
subjects confront in the corresponding experiments. The
total number of possible stimuli in the present experiments,
400, which is large compared with customary practice in
animal research, pales in comparison to the corresponding
number, more than 100,000, in experiments by Ashby and
his colleagues with human subjects. These and many other
inevitable differences between human and avian versions of
these experiments might make it surprising that the two
versions produce similar results, However, consider the
possibility that there has been a selective advantage in the
natural world for organisms, both humans and avians, with
an ability to perform in nearly optimal ways when sorting
multidimensional stimuli into ill-defined categories. This
presumably would be the case if multidimensional stimuli
were seen as objects, or at least if such stimuli invoked
processing mechanisms similar to those invoked by real
objects, and if organisms needed to discriminate between
ill-defined object categories such as food and predators. The
fact that pigeons transfer training from photographs of
rooms to the corresponding actual rooms (Cole & Honig,
1994) suggests that the rectangles in the present experiments
may have been processed similarly to real objects. If this
were s0, then the similarity between pigeons and humans in
the task developed by Ashby and his colleagues could imply
that that task captures at least part of the basic nature of
real-world categorization problems and successfully models
naturalistic visual categories (Herrnstein & Loveland, 1964
Wittgenstein, 1953).

The combined results of Tasks 1 and 2 address a problem
deriving from that fact that researchers do not know for
certain of whether the “true” perceptual dimensions of
rectangles for pigeons are length and width or shape and size

(see Footnote 2). Consider the implications of our combined
results, If the true dimensions were length and width, then
Tasks 1 and 2 involved information integration and selective
attention, respectively. However, if the true dimensions were
size and shape, then the reverse would be true: Task 1 would
involve selective attention and Task 2 would involve integra-
tion. The important combined finding from Tasks 1 and 2 is
therefore that whatever the true perceptual dimensions are,
both selective attention and integration conditions were
conducted and pigeons learned to behave in ways that
approximated optimal decision rules in both cases.

We now consider Bird 6 in Task 2, which, it will be
recalled, failed to master what we are calling the selective-
attention task, with the optimal bound, x = ¢. Recall that
Bird 6 produced an estimated decision bound with a slope
between —0.85 and —0.95 and an intercept between 18.40
and 19.45 (see Table 2). These values define a decision
bound close to the optimal bound in Task 1 of Experiment 2
{described shortly). The estimated decision bound for Bird 6
in the present Task 2, with an optimal bound of x = ¢, instead
approximated the decision bound x = —y + 4. In Experi-
ment 2, we examined this bound x = —y + 4 from the
perspective of optimality. Here, it is instructive to see its role
from three other perspectives.

First, note that we can distinguish Bird 6’s idiosyncratic
behavior in terms of its estimated decision bound, but not in
terms of the more common but less diagnostic index of
percentage of correct choices, in terms of which Bird 6 was
only slightly lower than, and not qualitatively different from,
the other birds in the x = ¢ task.

Sccond, Bird 6°s performance shows how important it is
to analyze performance of individual birds because it is clear
that 3 birds in the x = ¢ task responded one way and Bird 6
responded in a qualitatively different way. This difference
would have obscured, and been obscured by, an analysis of
group performance. Different birds apparently may solve the
same task differently, and these individual differences at this
level of task abstractness and complexity might prove useful
in diagnosing important differences in how different birds
process information.

Third, Bird 6’s performance in Task 2 sheds light on the
role in the present experiments of an issue that has been
fundamental in the history of perception of multidimen-
sional stimuli. The issue is important enough that Bird 6's
performance merits a detailed discussion. The issue is the
classic one of whether perception is holistic or analytic, that
is, whether a complex figure is built up from its component
features or is instead perceived as a whole. We consider this
question in general and its relevance 1o Bird 6’s performance
in particular. The answer to this question in general may
decpend to some extent on the structure of the perceived
stimulus: Nonhuman animals, like humans, might be less
abie to divide attention between dimensions of some types
of multidimensional stimuli than of others. Considerable
evidence suggests that compound stimuli do indeed vary in
the degree to which their elements are separable or disso-
ciable, both with humans (Garner, 1974; Shepard, 1964) and
nonhuman animals (Leith & Maki, 1977; Riley & Roitblat,
1978; but also see Cook, Riley, & Brown, 1992). Especially
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germane to Bird 6’s performance is evidence from human
subjects that suggests that rectangular stimuli may be
relatively integral (Felfoldy, 1974; however, see Dunn,
1983). Note, however, that the absolute magnitude of an
integrality effect can be small (although reliable), can
depend on the amount of practice, and derives from the
operation of mechanisms that are controversial (Dykes,
1979; Lockhead, 1979).

Even less is known for pigeons than for humans about
how rectangles are separable or integral, but indirect evi-
dence in the form of striking similarities between human and
pigeon shape perception (Blough, 1984; Cook, Cavoto, &
Cavoto, 1996) might be taken to indicate that pigeons
perceive rectangles in approximately the same way humans
do (see also our earlier discussion on the true perceptual
dimensions of rectangles). If rectangles are indeed relatively
integral for plgeons then pigeons might be expected to have
found it difficult in Task 2 to attend only to a single
dimension. The relevance of the integral-separable issue to
the performance of Bird 6 is clear. The estimated decision
bound for Bird 6 in Task 2 revealed virtually complete
information integration across the two dimensions. Bird 6
showed virtually complete divided attention in the task
requiring selective attention. Thus, Bird 6 categorized
rectangles in a manner compatible with the possibilities that
the rectangles were, at least for Bird 6, powerfully integral or
that one of the relevant dimensions was size.

Of course, Task 1 trained Bird 6 to divide attention
between the two dimensions, so that Bird 6’s continuing in
Task 2 to divide attention between dimensions may have
been a generalized transfer of past experience. In addition,
Tasks 1 and 2 were not equated in terms of the maximum
possible percentage of trials on which a maximizing bird’s
choices would have been reinforced, which also might have
been partly responsible for Bird 6’s performance in Task 2.
Also, the amount of practice apparently affects the mtegral-
ity effect in humans (Dykes, 1979), and the pigeons in the
present experiment were provided with much more practice
than were the humans in the experiment by Ashby and Gott
(1988), so that the present experiments may not have been
comparable in this sense to human experiments on the
integral-separable issue. For all these reasons, Bird 6’s
idiosyncratic decision bound in Task 2 must be interpreted
with some caution. Perhaps the most exciting aspect of Bird
6’s performance is not so much in the details of that
performance per se but in the demonstration of the utility of
the randomization procedure as a new tool with which to
study the classic problem of holistic versus feature-based
perception in nonhuman animals.

As interesting as the integral-separable issue is, it should
not be allowed to obscure the result more central to our
present goals. Whatever impact the structure of a rectangle
had on categorization by pigeons, that effect can often be
overcome by reward contingencies. In this sense, our results
are consistent with analogous human results (Ashby & Gott,
1988; Dykes 1979) showmg that rectangles can be catego-
rized in a flexible manner, in either a holistic or analytic
manner depending on the task, with the residual impact of
stimulus structure being relatively smail.

Experiment 2

We have seen so far that pigeons readily learn to
categorize exemplars in ways that approximate the two
optimal decision bounds: x = y and x = ¢. These two bounds
are characterized by a certain quantitative simplicity, but
real-world tasks may involve linear bounds with negative
slopes or bounds that are nonlinear. In Experiment 2 we
therefore arranged such bounds and asked if pigeons can
master the corresponding tasks. Tasks 1 and 2 roughly
corresponded to experiments in Maddox and Ashby (1993)
and Ashby and Maddox (1992), respectively.

Task I (“Larger Versus Smaller,”
Bound: x = —y + d)

In Experiment 1, Task 1 was defined in terms of the
integration of features from two dimensions, and Task 2 was
defined in terms that required a bird to learn and remember a
criterion. In these tasks, each requirement was imposed
separately. Some naturalistic tasks may impose both require-
ments simultaneously. Accordingly, in Task 1 in Experiment
2 we imposed both requirements simultaneously and investi-
gated whether birds could learn to categorize stimuli accord-
ing to the corresponding optimat decision bound.

Category membership in Task 1 was based on stimulus
size. The optimal bound can be stated in plain English as
follows: “If volume, or perimeter, or any other linear
correlate of size is greater than ¢riterion d, then respond B; if
itis less than d, respond A; otherwise, guess.” The top panel
of Figure 7 shows this optimal bound, along with the means
of the bivariate distributions A and B, and equal-likelihood
contours at 1 and 2 SDs from the mean for each category.
The bottom panel shows the two rectangles corresponding to
the means of the two categories, A and B, respectively.

Task 2 ( “Nonlinear,” Bound:
[x—alf +[y ~ b =r)

Naturalistic categories may produce nonlinear optimal
decision bounds. Ashby and Maddox (1992) have observed
that multidimensional naturalistic categories may invelve
variables with different variances; it might be a rarity for
variances of component variables to be equal. For example,
consider that for a pigeon to categorize an object either as a
pea or as a wheat seed might require a decision bound
defined in a stimulus space involving height and width but
that there would be no reason to assume that the variances of
heights of peas and of wheat seeds, or variances of widths of
peas and of wheat seeds, were equal. Recall that unequal
variances produce nonlinear optimal decision bounds (Ashby
& Maddox, 1992, 1998). Humans can learn at least some
nonlinear bounds, such as a bound described by a circle
(Ashby & Maddox, 1992). In Task 2 we examined whether
birds could learn to categorize rectangles when the optimal,
nonlinear decision bound was a circle. The top panel of
Figure 8 shows the means of the bivariate distributions for
Categories A and B, equal-likelihood contours at 1 and 2
§Ds, and the circular optimal decision bound. The bottom
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Figure 7. Task 1 of Experiment 2. In this task, an optimal
response consisted of categorizing a rectangle as belonging to
Category A or B if it was smaller or larger than a fixed criterion
size, respeciively. Top panel: Two contours of equal likelihood are
shown for each category, A and B. For each category, the smaller
and larger circular contours are 1 and 2 $Ds from the mean (filled
circle) of the corresponding normal bivariate distribution, respec-
tively. The solid line represents the optimal decision bound,
x = —y + d. Bottom panel: The two exemplars cotresponding to
the means of Categories A and B, respectively. Line thickness and
rectangle size are drawn to scale.

panel shows the two rectangles corresponding to the means
of the two categories, A and B, respectively.

Birds, like humans, may face nonlinear bounds in natural-
istic settings. A circular bound would appear to be a
reasonable first step toward exploring nonlinear bounds in
general. Does such a task define an insuperable problem for
a nonhuman animal? Or can a pigeon confront such a
problem and by one means or another learn to approximate
an optimal solution to it?

Method
Animals and Apparatus

The animals were 4 experimentally naive White Cameaux
pigeons (Columba livia) maintained as described in the General
Method section. The apparatus was also as described in the General
Method section.

Procedure

The procedure was as described in the General Method section,
with additional details as described next. As in Experiment 1, we
replicated Task 1 after the completion of Task 2 to determine
whether the birds could demonstrate the flexibility required to
relearn a rule once learned and then abandoned.

Task I (bound: x = —y -t d) and its replication. The heights
and widths of rectangles in Category A were independently drawn
from identical distributions having means of 7 (2.1 ¢cm) and
standard deviations of 3 (0.9 cm). The dimensions of Category B
stimuli were similarly selected from identical distributions with
means of 14 (3.9 cm) and standard deviations of 3 (0.9 cm).
Rectangles from Category A and Category B were therefore, on
average, larger and smaller, respectively. Note that a parameter d =
21 in this bound is required merely because we used screen units
ranging between 1 (0.3 cm) and 20 (6.0 cm) for both x and y.

The distributions for stimuli in Task 1 were determined simply
by rotating 90° counterclockwise the distributions {and therefore
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Figure 8. Task 2 of Experiment 2. In this task, an optimal
response consisted of categorizing a rectangle as belonging to
Category A or B if its corresponding point in the stimulus space was
or was not in the circular region indicated by the bold circie,
respectively. Top panel: Two contours of equal likelihood are
shown for each category, A and B. For cach category, the smaller
and larger contours are 1 and 2 $Ds from the mean (filled circle) of
the corresponding normal bivariate distribution, respectively. The
bold circular line represents the optimal decision bound,
(x — 7.5)% + (y — 13.5)> = 3.252 Units along axes correspond to
0.3 ¢m. Bottom panel: The two exemplars corresponding to the
means of Categories A and B, respectively.
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the optimal decision bound) from Task 1 of Experiment 1. The
optimal decision bound was therefore the line with a slope of —1,
defined by length + width = 6 cm. It followed that optimal
accuracy in the present Task 1 was the same as in Task 1 of
Experiment 1, with an average maximum of 88% correct being
theoretically obtainable. Similarly, there was a theoretical optimum
of B2% correct if a bird attended only to one dimension and
responded according to a decision bound defined by either length or
widih equal to 10.5, the optimal one-dimensional criterion. For
comparison, the nonlinear optimal decision bound from Task 2
described below would have resulted in chance performance, or
50% correct, in Task 1.

Task 2 (bound: {x — a]? + [y — b}? = ). The nonlinear bound
for Task 2 was arranged by sampling stimuli from bivariate
distributions with unequal variances. The x- and y-coordinates of
rectangles in Category A were sampled from an approximately
normal bivariate distribution with a mean width of 8 (2.4 cm) and a
mean height of 13 (3.9 cm). The standard deviation of widths and
the standard deviation of heights of rectangles in Category A were
the same: 1 screen umit (0.3 cm). For Category B, the widths and
heights of rectangles were drawn from an approximately normal
distribution with a mean width of 13 (3.9 cm) and a mean height of
8 (2.4 cm). The standard deviation of widths and of heights in the
bivariate distribution for Category B were the same: 4 (1.2 cm).
Note that the standard deviations for Category B were greater than
those for Category A. The optimal decision bound in the stimulus
space was a circle, with a center point, {a, b), where a = 7.5; b =
13.5; and radius, » = 3.25. Optimal performance corresponded to
an average percentage correct of 96. For comparison, if a subject
used the linear bound from Task 1, the average percentage correct
would have been only 50%.

Results
Acquisition and Overall Accuracy

As in Experiment 1, choices on the first five trials of each
session were excluded from data analysis to reduce the
impact of warm-up effects.

Table 3 shows that each bird satisfied the stability
criterion in an average of 14.5 and 9.5 days for Task 1 and its
replication, respectively, and in 16.8 days for Task 2, so that
both tasks were learnable in this primitive sense. We again
consider how close accuracy was to optimality. The top row
of Tabile 3 shows the percentage of choices that were to the
better key averaged over the last 5 days of a task. Mean
accuracy across Task 1 and its replication was 90.2 and 80.4
in Task 2. There was not a reliable difference between
accuracy in Task ! and its replication, so that, as in
Experiment 1, a previously learned and abandoned rule
could be relearned to approximately its earlier level.

As in Experiment 1, overall accuracy was far above the
chance level of 50% for each bird in each task. Again, we
investigated the possibility that a suboptimal decision bound
accounted for above-chance performance. Specifically, as
we did for Task 1 of Experiment 1, we calculated the
percentage of choices that were accounted for by attending
only to height or by attending only to width for Task 1 of
Experiment 2. Table 3 shows that for each bird, both
single-dimension decision bounds (x = ¢ and y = ¢} ac-
counted for fewer choices than did the optimal decision
bound (x = —y + d), which requires integration of informa-

tion from both dimensions. This suggests that birds used
information from both dimensions of stimuli in making
category judgments rather than responding on the basis of a
single stimulus component,

Because Task 2 also required birds to attend both to height
and width, we again performed a single-dimension analysis.
The results, displayed in Table 3, show that each single-
dimension decision bound accounted for a relatively low
percentage of choices, compared with the nonlinear optimal
decision bound. This again suggests that the birds attended
to both dimensions, but it says little about whether informa-
tion from each dimension was used appropriately. That is,
one could achieve above-chance performance by using an
integration rule that was different from the nonlinear optimal
decision bound. Because the optimal decision bound for
Task 2 was nonlinear, we investigated this possibility by
testing a simpler linear decision bound. Specifically, the
decision bound x = y defines the line equidistant from the
category means and would result in above-chance, but
suboptimal, performance. Table 3 shows the results of this
analysis. Note that this decision bound accounts for a
comparable (in fact, slightly higher) percentage of responses
than the nonlinear optimal decision bound. Thus, at this
potnt, it is not entirely clear whether birds used a nonlinear
bound similar to the optimal one or some linear approxima-
tion that allowed relatively accurate performance. In the
decision-bound analysis in the next section we attempt to
clarify this issue,

In summary, the performance of birds in Tasks 1 and 2 of
Experiment 2 approximated optimality in terms of their
attentional requirements. That is, birds seemed 1o attend to
both height and width in making category judgments, as is
required for optimal performance. This brings us to the
analysis of individual decision bounds, which provide a
clearer picture of the results than analyses of overall
accuracy.

Individual Estimated Decision Bounds

Figures 9 and 10 show the stimulus spaces for the best and
worst cases in Tasks 1 and 2, that is, the cases in which the
best fitting decision bounds accounted for the highest and
the lowest number of choices, respectively. As was the case
in Experiment 1, 2 birds (Birds 7 and 8) satisfied these
criterta in both Tasks 1 and 2. Table 4 gives the best fitting
decision bounds and the percentage of responses accounted
for by those lines for each bird in each task.

Task 1 (bound: x = —y + dj). Table 4 shows that the
percentage of a bird’s categorization responses correctly
described by the best fitting estimated lines ranged from
88.0% to 91.1%. The estimated bounds therefore accurately
summarized how birds categorized rectangles. The esti-
mated slopes varied from —2.80 to —0.65. Half the esti-
mated slopes were greater than - 1.00 and half were smaller,
indicating that they were roughly centered around the
optimal value of —1.00. Table 4 shows also that the
estimated intercepts varied from 17.25 to 39.80, again with
half below and half above the optimal value of 21.00. In
summary, the estimated decision bounds at least roughly
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Table 3

Experiment 2: Accuracy and Amount of Training

Task

Bird4 Bird5 Bird7 Bird8 Average

Task I:x=—y + d
% of choices to the optimal or “better” key
% of choices accounted for by height
% of choices accounted for by width
% of choices that were reinforced
% of choices expected to be reinforced given
oplimal performance

Day of training on which stability criterion was

first met

Total days of training

Task2: (x —ap + (y— bR =2

% of choices to the optimal or “better’” key

% of choices accounted for by height

% of choices accounted for by width

% of choices accounted for by integration®

% of choices that were reinforced

% of choices expected to be reinforced given
optimal performance

Day of training on which stability criterion was

first met

Total days of training

Replication of Task 1

% of choices to the optimal or “better” key

% of choices accounted for by height

% of choices accounted for by width

% of choices that were reinforced

% of choices expected to be reinforced given
optimal performance

Day of training on which stability criterion was

first met
Total days of training

90.2 89.8 91.7 87.8 89.9
81.3 79.6 82.7 80.7 g1.1
80.4 85.1 8.1 809 829
829 84.9 85.6 82.9 84.1
88.0 88.0 88.0 88.0 88.0
12 9 10 27 14.5
34 37 30 39 35.0
787 81.3 86.7 74.9 80.4
74.0 80.2 81.3 69.8 76.3
771 75.8 86.0 68.4 76.8
81.2 83.7 88.3 75.2 82.1
71.3 80.9 84.0 73.6 79.0
96.0 96.0 96.0 96.0 96.0
20 16 15 16 16.8
33 30 31 60 385
90.3 88.8 927 89.6 904
80.0 78.4 80.9 76.0 78.8
833 83.6 83.1 84.4 83.6
85.6 84.0 84.9 85.8 85.1
88.0 88.0 88.0 88.0 88.0
14 7 6 1t 9.5
37 33 30 32 33.0

*Integration is defined by the decision-bound x = y.

approximated the optimal decision bound. The approxima-
tions for Birds 4 and 7 were especially impressive, but Table
4 shows that even the worst case qualitatively conformed to
the optimal bound.

Task 2 (bound: {x — a]? + [y — b]? =r?). Table 4shows
that the percentage of choices accounted for by the best
fitting circular decision bounds ranged from 77.3% 1o
89.1%. Table 4 shows that in all four cases, the estimated
radii were greater than the optimal value and that the
estimated center points (a, b) were not located at the center
point of the optimal decision bound, as they should have
been. They were instead shifted in the direction away from
the mean of Category B. In general, however, these shifts,
although they were in the correct direction, were too big.

To better determine the extent to which performance was
optimal, we compared the fits of the nonlinear bounds with
fits of straight-line decision bounds. If birds were virtually
optimal, one would expect the nonlinear estimated bounds to
describe the data better than linear bounds. Table 4 shows
that the circular bounds were only slightly better, in the
sense that they accounted for a marginally higher percentage
of choices, #(3) = 3.07, p < .05, one-tailed. The extremely
small nature of the improvement gained by the circular
bound may suggest that birds learn to approximate optimal
solutions to at least some nonlinear tasks essentially by

behaving in accordance with a linear bound similar to the
nonlinear one.

Replication of Task 1. Table 4 shows that the percentage
of choices accounted for by the best fitting straight lines
ranged from 89.8% to 92.9%. Estimated slopes varied from
—2.4510 —1.15, with all eight values being smaller than the
optimal value of —1.00. Estimated intercepts varied from 21.80
to 36.50, with all eight values being greater than the optimal
value of 20.00. The estimated decision bounds for Birds 4 and 7
were highly similar to the optimal bound. The birds were clearly
able to remaster an ill-defined categorization task after having
performed for a while on a different, potentially interfering task.

FProbe stimuli. As was the case in Experiment 1, we
locked for a potential influence of stimulus novelty. Figure
11 displays stimuli that were presented only on the final day
of the terminal 5-day periods for Birds 7 and 8. Again,
performance on these probe stimuli was impressive: Twenty-
four of 26 (92.3%) and 21 of 22 (95.5%) responses 1o probe
stimuli in Task 1 were optimal for Birds 7 and 8, respectively. In
both cases, performance on these stimuli was actually better than
their overall accuracy rates of 91.8% and 87.8%. This pattern of
results can also be seen in Task 2, in which 8 of 12 probe
stimuli (66.7%) for Bird 7 and 14 of 16 probe stimuli
{87.5%) for Bird 8 were categorized optimally, compared
with the corresponding overall values of 86.7% and 73.6%.
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Discussion

Individual birds learned to perform in tasks with optimal
decision bounds that were more complex than those in
Experiment 1 in the following ways: In Task 1 of Experi-
ment 2, the optimal bound involved both information
integration and memory of a criterion, and in Task 2 the
optimal bound was nonlinear.

In summary, it appears that pigeons are capable of
learning to place multidimensional stimuli into ill-defined
categories in tasks with a considerable range of optimal
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Figure 9. Task 1 of Experiment 2. Stimulus spaces for Birds 7
(top) and 8 (bottom). Points and circles represent choices of
Category A or B, respectively. Each panel shows each of a bird’s
choices over the last 5 days of the task. Bold lines show the optimal
decision bound, x = —y + 4, and lighter lines show the envelope of
all best fitting estimated decision bounds. Units along axes
correspond to 0.3 cm,
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Figure 10. Task 2 of Experiment 2. Stimulus spaces for Birds 7
(top) and 8 (bottom). Points and circles represent choices of
Category A or B, respectively. Each panel shows cach of a bird’s
choices over the last 5 days of the task. Bold lines show the optimal
decision bound, (x — 7.5)% + (y — 13.5) = 3,257, and lighter lines
show the envelope of all best fitting estimated decision bounds.
Units along axes correspond to 0.3 cm.

decision bounds. This result is what we might expect if the
present tasks reflected an ability of pigeons to solve the visual
categorization problems they face in the natural world.

General Discussion

How Might the Randomization Procedure Model
Naturalistic Categorization?

One of our goals was to develop a procedure that might
serve as a tractable model for the study of naturalistic visual
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Table 4
Experiment 2: Best Fitting Decision Bounds
Task Bird4 Bird5 Bird7 Bird 8
Task 1: x = —y
% of choices accounted for by best fitting straight lines 90.7 89.1 91.1 880
No. of best fitting lines 2 108 21 8
Parameter values from most extreme best fitting straight lines
Slope (optimal = —1.00) —1.30 -280 —-095 -070
— —115 —075 -065
Intercept (optimal = 21.00) 2270 2160 1750 1725
2275 3980 2030 1785
Task2: (x —aP +{(y—b)P =8
% of choices accounted for by best fitting straight lines 81.1 833 887 711
No. of best fitting lines 2 9 9 12
Parameter values from most extreme best fitting straight lines
Slope 0.70 0.70 1.05 070
— 075  L10  1.20
Intercept 390 450 —-030 220
3.95 525 045 555
% of choices accounted for by best fitting circles 81.8 844  89.1 773
No. of best fitting circles 43 7 7 43
Parameters from most extreme best fitting circles
x-coordinate (optimal = 7.50) Q.25 7.95 350 350
700 825 450 675
y-coordinate (optimal = 13.50) 1275 1475 1625 1625
1925 18.00 1700 20.00
Radius (optimal = 3.25) 595 6.00 7.75 6.50
15.00 8.00 9.00 1100
Replication of Task 1
% of choices accounted for by best fitting straight lines 90.2 80.8 929 904
No. of best fitting lines 5 i3 4 22
Parameters from most extreme best fitting straight lines
Slope (optimal = —1.00) —120 -245 -—-120 -195
-1L15 -205 — -—165
Intercept (optimal = 21.00) 2260 3250 21.80 2595
23.15 3650 2195 2940

Note.

concepts in nonhuman animals. Consider the several ways in
which categories in the randomization task may simulate, at
least in a formal sense, naturalistic visual concepts (Ashby &
Maddox, 1998). First, presumably like naturalistic concepts,
they involve a large number of exemplars. Second, they are
ill-defined, *“fuzzy,” and are characterized better by “‘family
resemblance” than by defining features. That is, both
naturalistic concepts and the present categories involve
uncertainty because categories overlap in the sense that
features usually associated with one category sometimes
appear in exemplars of the other category. In fact, the
randomization procedure might capture this aspect of natu-
ralistic categories better than does the usual ill-defined
concept task {e.g., Medin & Dewey, 1984) because the
randomization task includes the ali-important case in which
the very same stimulus on different occasions belongs to
different categories. Gestalt psychologists made much of
this situation in the form of reversible images, and these
ambiguous images played a critical role in the development
of ideas about the nature of family resemblance, fuzzy
concepts, and ill-defined concepts (Hanson, 1969; Koffka,
1935; Kohler, 1947; Wittgensiein, 1953). At first glance, it
admittedly might seem strange that the very same stimulus

Dashes indicate that the best fitting parameter was unique.

might on different occasions belong to different categories.
There are occasions, for example, when one would not be
inclined to expect that the same stimulus would be catego-
rized differently: A pigeon would seem unlikely to confuse a
bit of grain, even a bit of grain swirling in the air, with a
peregrine falcon. On further reflection, and on consideration
of all the examples and arguments amassed by the gestalt
scholars and contextualist epistemologists cited earlier, we
are persuaded that there are probably at least sotne occasions
when naturalistic stimuli satisfy this particularly interesting
case. A comprehensive model of naturalistic categorization
should therefore be able to handle it, and the present task
seems admirably suited to do so. Third, the randomization
task, with multivariate normal sampling distributions, can
model the special case of naturalistic categories having
many exempiars located relatively near a category’s mean,
with progressively fewer being located farther away from
the mean. If naturalistic exemplars in other cases do not
cluster near prototypes, the randomization procedure might
still be able to model the situation with suitable changes in
the sampling distributions. This flexibility in the randomiza-
tion model is sometimes overlooked (Estes, 1994): The
procedure does not require the use of overlapping bivariate
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Responses to probe stimuli. Stimulus spaces for Birds 7 (left panels) and 8 (right panels)

for Tasks 1 (top) and 2 (bottom). Each panel shows responses to stimuli presented only on the final
day of the terminal 5-day periods represented in Figures 9 and 10. Bold lines show the optimal
decision bound, and lighter lines show the envelope of all best fitting estimated decision bounds for
each bird and condition. Units along the axes correspond to 0.3 cm.

normal distributions. Although these distributions are fre-
quently used, as in the present experiments, and although
they have desirable properties in mimicking certain natural-
istic categories, there is nothing that requires their use.
Fourth, exemplars in the randomization task with normal
distributions vary more or less continuously along each
dimension, at least within a specified range, as is presumably
also true for many naturalistic categories, such as faces, with
eye-to-eye distances, and eye to mouth distances, varying
tore or less continuously. Fifth, the randomization task can
involve categories with unequal variances: As we discussed
in the introduction to Experiment 2, Task 2, it is entirely
possible that some npaturalistic categories may involve
unequal variances.

In addition to these formal similariies between the

present task and naturalistic tasks, we can now see that there
may be processing similarities as well. Different naturalistic
concepts may involve either attending selectively to a single
dimension or dividing attention across dimensions, and we
have seen that the present task may also establish either of
these different attentional processes in nonhuman animals.
Finally, we reemphasize a possible naturalistic implication
of the fact that pigeons and humans can perform in nearly
optimal ways in a variety of different decision-bound tasks.
Why might individual humans and individual pigeons,
having such different neuroanatomical structures and pro-
cesses and such different environmental histories, perform
similarly? One obvious possibility is that the procedure taps
into how these different species have evolved to solve, in
approximately optimal ways, the same naturalistic problem,
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which is to sort incalculably many, complex, and overlap-
ping visual stimuli into a manageably small number of
categories. In short, if we assume that the procedure taps into
a naturalistic problem common to birds and humans, then
the similarity in performance is readily understandable.

We hasten to add that we do not claim that a bird
categorizing a rectangle into ill-defined categories of overlap-
ping bivariate normal distributions is necessarily in every
way like a bird categorizing an ambiguous naturalistic
stimutus into ill-defined categories of, say, prey or predator.
In particular, the stimuli used here were static and 2-D,
whereas many naturalistic stimuli may be dynamic and may
have many dimensions. Nevertheless, we would like to
suggest that the several ways in which the present task
resembles naturalistic situations recommends the task as a
tractable model and useful heuristic for the study of natural-
istic categories.

Optimal Categorization of Naturalistic Stimuli

If the present method resembles the situation birds face
when they categorize naturalistic stimuli, then we can infer
that birds may do a remarkably good job at approximating
optimal solutions in visual natralistic categorization. That
this may be so has not been apparent from the existing
literatures, either on naturalistic visual concepts, because
that literature is based on methods without any applicable
analyses in terms of optimality (e.g., see Commons et al.,
1983; Jitsumori & Yoshihara, 1997; Vaughan & Green,
1984), or on optimization in naturalistic contexts, because
that literature is based on methods without any applicable
analyses in terms of categorization of multidimensional
visual stimuli {Commons et al., 1987; Stephens & Krebs,
1986).

For many years, data have suggested that pigeons can and
often do approximate optimal solutions to diverse tasks
involving probabilistic reinforcement (Graf et al., 1964;
Shimp, 1966, 1969, 1973; Shimp et al., 1996; Silberberg &
Ziriax, 1985, but see Vaughan, 1987; Hineline, Silberberg,
Ziriax, Timberlake, & Vaughan, 1987). The present results
extend those previous findings to situations in which config-
ural properties of stimuli play critical roles in determining
reward payoff and suggest that optimal solutions are also
approximated in corresponding naturalistic situations involv-
ing probabilistic choice and complex, configural stimuli.
The possibility that naturalistic performance is optimal has
long been considered (see the review by Stephens & Krebs,
1986), and the present results add credibility to this possibii-
ity for situations involving complex, configural visual
discriminations.

To the extent to which birds approximate optimal solu-
tions to naturalistic categorization problems, they appear to
conform more to a tradition of *‘rational” choice (Shelly &
Bryan, 1964; Von Neumann & Morgenstern, 1947) than to
that of “irrational” (Kahneman, Slovic, & Tversky, 1982) or
“minimally rational” choice (Cherniak, 1986). Humans
have been shown to make such poor use of available
statistical information (such as base-rate information) in
certain simulated naturalistic tasks that it is now common to

emphasize an irrational quality in human judgment. Catege-
rization of behavior in probabilistic tasks as rational or
irrational is fraught with many conceptual and empirical
difficulties (Gigerenzer et al., 1989), Nevertheless, it would
seem that the present results from pigeons, as well as the
previous results from humans in the experiments on which
the present experiments were based, conform about as well
as they could to the notion of rational choice, and new
computational perspectives increase the plausibility of such
a notion (Gigerenzer & Goldstein, 1996).

Potential for Future Research

‘What are some other possible uses of a nonhuman animal
version of the randomization procedure? We can now ask
new questions. Are there any decision bounds avians cannot
learn to approximate, and, if so, what are they? What bounds
are easier or harder to learn, and what effect does learning
one bound have on learning another? Will the dialogue
between exemplar theorists and decision-bound theorists be
resolved in the same manner as with humans? Will exemplar
theory account for performance of avians on some decision-
bound tasks and not on others? It now is possible to use
stimuli other than the rectangles used here and thereby to
begin systematically to determine what stimuli are relatively
integral or separable (as in Ashby & Gott, 1988; Ashby &
Maddox, 1998). Such results should help to clarify how
holistic or feature-based perception by nonhuman animals
affects naturalistic detection of different types of prey or
predators. More generally, it would be of interest to know
how a decision-bound approach applies to tasks involving
stimuli more nearly naturalistic than the present rectangles,
including human facial expressions (Jitsumori & Yoshihara,
1997). Would it be easier for pigeons to learn to approximate
optimal bounds based on stimuli that looked like birds,
grain, predators, and so on? Finally, the human version of
the procedure is proving useful in neuropsychological
analyses of cognitive deficits in patients with Parkinson’s
disease (Maddox et al., 1996), so it should now be possible
for an animal model to help to unlock the neurobiological
bases of this and other disorders. The search for an animal
model of highly flexible human performances has been a
high-priority goal for some behavioral neuroscientists, and
the present results further encourage such a search because
they provide additional converging evidence that in numer-
ous visual tasks, pigeons and humans behave in sirikingly
similar fashions.

Without listing more than a fraction of the tasks for which
there are such striking similarities between avian and human
performances, we can note that Cook et al. (1996, p. 165),
who used multidimensional stimuli to study visual organiza-
tion, found *‘strikingly human-like” results, as did Fremouw
et al. (1998) in research on avian shifts of attention between
local and global levels of perceptual analysis. Shimp and
Friedrich (1993) found evidence for a spatial attentional
system in avians similar in several ways to that in humans.
Blough (1984) found that confusion matrices summarizing
pigeons’ discrimination among letiers of the alphabet, to-
gether with other data, “suggests that some common pro-
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cesses determine letter recognition in pigeons and people”
(p. 281). Herrnstein and Loveland’s (1964) pioneering study
showed that pigeons can quickly learn visual concepts based
on naturalistic objects meaningful to humans. It should
prove fascinating and useful to discover why pigeons and
humans, with their dissimilar visual systems and neuroana-
tomical structures, behave so similarly in these and other
visual tasks.
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