Application 2 Understanding PCA

The Principle Components are the eigenvectors of the covariance of the data...

Let $X = U\Sigma V^T$, $X \in \mathbb{R}^{n \times t}$ (column changing in time)

- $XX^T = U\Sigma^2U^T$
 - Average over time (Cols of U in \mathbb{R}^n)
 - Eigenvecs of XX^T =Left SVs
- $\bullet \ X^T X = V \Sigma^2 V^T$
 - Average over space (Cols of V in \mathbb{R}^t)
 - Eigenvecs of X^TX =Right SVs

Application 2 Understanding PCA, continued

We also have:

$$XV = U\Sigma, \qquad X^TU = V\Sigma$$

When computing the PCA, we have a choice-either U or V.

Features of the PCA (or Karhunen-Loéve):

- Orthogonal
- Optimal (least squares) low dim rep.
- The eigs are stationary vals to

$$\phi^T X^T X \phi$$
, s.t. $\|\phi\| = 1$

Data is uncorrelated in this basis.

Application 3 Face Coding (Eigenfaces)*

- \bullet Each face: 64 \times 64 pixels, in ${\bf R}^{4096}$ (commercial grade: 128 \times 128, ${\bf R}^{16,384})$
- 10 images total (commercial grade: State DMV)
- \bullet PCA Eigs in ${
 m I\!R}^{4096}$: Each face is coded by its eigenvector basis coefficients
- FaceIt technology: Based on this idea, but uses sub-block coding

^{*}Data from M. Kirby, who received it from someone at MIT