Application 2 Understanding PCA The Principle Components are the eigenvectors of the covariance of the data... Let $X = U\Sigma V^T$, $X \in \mathbb{R}^{n \times t}$ (column changing in time) - $XX^T = U\Sigma^2U^T$ - Average over time (Cols of U in \mathbb{R}^n) - Eigenvecs of XX^T =Left SVs - $\bullet \ X^T X = V \Sigma^2 V^T$ - Average over space (Cols of V in \mathbb{R}^t) - Eigenvecs of X^TX =Right SVs ## Application 2 Understanding PCA, continued We also have: $$XV = U\Sigma, \qquad X^TU = V\Sigma$$ When computing the PCA, we have a choice-either U or V. Features of the PCA (or Karhunen-Loéve): - Orthogonal - Optimal (least squares) low dim rep. - The eigs are stationary vals to $$\phi^T X^T X \phi$$, s.t. $\|\phi\| = 1$ Data is uncorrelated in this basis. ## Application 3 Face Coding (Eigenfaces)* - \bullet Each face: 64 \times 64 pixels, in ${\bf R}^{4096}$ (commercial grade: 128 \times 128, ${\bf R}^{16,384})$ - 10 images total (commercial grade: State DMV) - \bullet PCA Eigs in ${ m I\!R}^{4096}$: Each face is coded by its eigenvector basis coefficients - FaceIt technology: Based on this idea, but uses sub-block coding ^{*}Data from M. Kirby, who received it from someone at MIT