Introduction to Chaotic Dynamical Systems

Prof Hundley

Spring 2024

Introduction

The Iteration Game
Take any positive number.

- Take its square root.

Introduction

The Iteration Game

Take any positive number.

- Take its square root.
- Take the square root of the result.

Introduction

The Iteration Game

Take any positive number.

- Take its square root.
- Take the square root of the result.
- Take the square root of the result.

Introduction

The Iteration Game

Take any positive number.

- Take its square root.
- Take the square root of the result.
- Take the square root of the result.
- $x_{n+1}=\sqrt{x_{n}}=f\left(x_{n}\right)$

Introduction

The Iteration Game

Take any positive number.

- Take its square root.
- Take the square root of the result.
- Take the square root of the result.
- $x_{n+1}=\sqrt{x_{n}}=f\left(x_{n}\right)$

This is function iteration.

Introduction

The Iteration Game

Take any positive number.

- Take its square root.
- Take the square root of the result.
- Take the square root of the result.
- $x_{n+1}=\sqrt{x_{n}}=f\left(x_{n}\right)$

This is function iteration.
Can we predict the long term behavior of any starting point?

Introduction

The Iteration Game

Take any positive number.

- Take its square root.
- Take the square root of the result.
- Take the square root of the result.
- $x_{n+1}=\sqrt{x_{n}}=f\left(x_{n}\right)$

This is function iteration.
Can we predict the long term behavior of any starting point?

- If you chose $x_{0}=0$:

Introduction

The Iteration Game

Take any positive number.

- Take its square root.
- Take the square root of the result.
- Take the square root of the result.
- $x_{n+1}=\sqrt{x_{n}}=f\left(x_{n}\right)$

This is function iteration.
Can we predict the long term behavior of any starting point?

- If you chose $x_{0}=0$:nothing happened.

Introduction

The Iteration Game

Take any positive number.

- Take its square root.
- Take the square root of the result.
- Take the square root of the result.
- $x_{n+1}=\sqrt{x_{n}}=f\left(x_{n}\right)$

This is function iteration.
Can we predict the long term behavior of any starting point?

- If you chose $x_{0}=0$:nothing happened.
- If you chose $x_{0}=1$:

Introduction

The Iteration Game

Take any positive number.

- Take its square root.
- Take the square root of the result.
- Take the square root of the result.
- $x_{n+1}=\sqrt{x_{n}}=f\left(x_{n}\right)$

This is function iteration.
Can we predict the long term behavior of any starting point?

- If you chose $x_{0}=0$:nothing happened.
- If you chose $x_{0}=1$:nothing happened.

Introduction

The Iteration Game

Take any positive number.

- Take its square root.
- Take the square root of the result.
- Take the square root of the result.
- $x_{n+1}=\sqrt{x_{n}}=f\left(x_{n}\right)$

This is function iteration.
Can we predict the long term behavior of any starting point?

- If you chose $x_{0}=0$:nothing happened.
- If you chose $x_{0}=1$:nothing happened.
- 0,1 are called fixed points.

Introduction

The Iteration Game

Take any positive number.

- Take its square root.
- Take the square root of the result.
- Take the square root of the result.
- $x_{n+1}=\sqrt{x_{n}}=f\left(x_{n}\right)$

This is function iteration.
Can we predict the long term behavior of any starting point?

- If you chose $x_{0}=0$:nothing happened.
- If you chose $x_{0}=1$:nothing happened.
- 0,1 are called fixed points.
- All other numbers got closer and closer and closer to the value 1 .

New function for iteration:

$$
N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)
$$

New function for iteration:

$$
N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)
$$

Let's iterate this using $x_{0}=1$.

New function for iteration:

$$
N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)
$$

Let's iterate this using $x_{0}=1$.
Then

$$
x_{1}=
$$

New function for iteration:

$$
N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)
$$

Let's iterate this using $x_{0}=1$.
Then

$$
x_{1}=\frac{1}{2}\left(1+\frac{5}{1}\right)=
$$

New function for iteration:

$$
N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)
$$

Let's iterate this using $x_{0}=1$.
Then

$$
\begin{aligned}
& x_{1}=\frac{1}{2}\left(1+\frac{5}{1}\right)=3 \\
& x_{2}=
\end{aligned}
$$

New function for iteration:

$$
N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)
$$

Let's iterate this using $x_{0}=1$.
Then

$$
\begin{aligned}
& x_{1}=\frac{1}{2}\left(1+\frac{5}{1}\right)=3 \\
x_{2}= & \frac{1}{2}\left(3+\frac{5}{3}\right)=
\end{aligned}
$$

New function for iteration:

$$
N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)
$$

Let's iterate this using $x_{0}=1$.
Then

$$
\begin{gathered}
x_{1}=\frac{1}{2}\left(1+\frac{5}{1}\right)=3 \\
x_{2}=\frac{1}{2}\left(3+\frac{5}{3}\right)=\frac{7}{3}=2.333 \ldots \\
x_{3} \approx 2.238095 \ldots
\end{gathered}
$$

New function for iteration:

$$
N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)
$$

Let's iterate this using $x_{0}=1$.
Then

$$
\begin{gathered}
x_{1}=\frac{1}{2}\left(1+\frac{5}{1}\right)=3 \\
x_{2}=\frac{1}{2}\left(3+\frac{5}{3}\right)=\frac{7}{3}=2.333 \ldots \\
x_{3} \approx 2.238095 \ldots
\end{gathered}
$$

$$
x_{4} \approx 2.236068 \ldots
$$

New function for iteration:

$$
N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)
$$

Let's iterate this using $x_{0}=1$.
Then

$$
\begin{gathered}
x_{1}=\frac{1}{2}\left(1+\frac{5}{1}\right)=3 \\
x_{2}=\frac{1}{2}\left(3+\frac{5}{3}\right)=\frac{7}{3}=2.333 \ldots \\
x_{3} \approx 2.238095 \ldots
\end{gathered}
$$

$$
x_{4} \approx 2.236068 \ldots
$$

$$
x_{5} \approx 2.236067 \ldots
$$

Using function iteration,

$$
x_{n+1}=f\left(x_{n}\right)
$$

Can we compute the fixed points (or equilibria)?

Using function iteration,

$$
x_{n+1}=f\left(x_{n}\right)
$$

Can we compute the fixed points (or equilibria)? Main idea:

Using function iteration,

$$
x_{n+1}=f\left(x_{n}\right)
$$

Can we compute the fixed points (or equilibria)? Main idea:

$$
\text { If } x_{n} \rightarrow L,
$$

Using function iteration,

$$
x_{n+1}=f\left(x_{n}\right)
$$

Can we compute the fixed points (or equilibria)? Main idea:

$$
\text { If } x_{n} \rightarrow L, \text { then } x_{n+1} \rightarrow L
$$

Using function iteration,

$$
x_{n+1}=f\left(x_{n}\right)
$$

Can we compute the fixed points (or equilibria)? Main idea:

$$
\text { If } x_{n} \rightarrow L \text {, then } x_{n+1} \rightarrow L
$$

In the first example:

$$
x_{n+1}=f\left(x_{n}\right)
$$

Using function iteration,

$$
x_{n+1}=f\left(x_{n}\right)
$$

Can we compute the fixed points (or equilibria)? Main idea:

$$
\text { If } x_{n} \rightarrow L \text {, then } x_{n+1} \rightarrow L
$$

In the first example:

$$
x_{n+1}=f\left(x_{n}\right) \quad \Rightarrow \quad \lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \quad \Rightarrow
$$

Using function iteration,

$$
x_{n+1}=f\left(x_{n}\right)
$$

Can we compute the fixed points (or equilibria)?
Main idea:

$$
\text { If } x_{n} \rightarrow L \text {, then } x_{n+1} \rightarrow L
$$

In the first example:

$$
x_{n+1}=f\left(x_{n}\right) \quad \Rightarrow \quad \lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \quad \Rightarrow
$$

$$
\lim _{n \rightarrow \infty} x_{n+1}=f\left(\lim _{n \rightarrow \infty} x_{n}\right)
$$

Using function iteration,

$$
x_{n+1}=f\left(x_{n}\right)
$$

Can we compute the fixed points (or equilibria)? Main idea:

$$
\text { If } x_{n} \rightarrow L \text {, then } x_{n+1} \rightarrow L
$$

In the first example:

$$
x_{n+1}=f\left(x_{n}\right) \quad \Rightarrow \quad \lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \quad \Rightarrow
$$

$$
\lim _{n \rightarrow \infty} x_{n+1}=f\left(\lim _{n \rightarrow \infty} x_{n}\right) \Rightarrow L=\sqrt{L}
$$

Using function iteration,

$$
x_{n+1}=f\left(x_{n}\right)
$$

Can we compute the fixed points (or equilibria)?
Main idea:

$$
\text { If } x_{n} \rightarrow L \text {, then } x_{n+1} \rightarrow L
$$

In the first example:

$$
x_{n+1}=f\left(x_{n}\right) \quad \Rightarrow \quad \lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \quad \Rightarrow
$$

$$
\lim _{n \rightarrow \infty} x_{n+1}=f\left(\lim _{n \rightarrow \infty} x_{n}\right) \quad \Rightarrow \quad L=\sqrt{L} \quad \Rightarrow \quad L^{2}=L \quad \Rightarrow
$$

Using function iteration,

$$
x_{n+1}=f\left(x_{n}\right)
$$

Can we compute the fixed points (or equilibria)?
Main idea:

$$
\text { If } x_{n} \rightarrow L, \text { then } x_{n+1} \rightarrow L
$$

In the first example:

$$
x_{n+1}=f\left(x_{n}\right) \quad \Rightarrow \quad \lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \quad \Rightarrow
$$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} x_{n+1}=f\left(\lim _{n \rightarrow \infty} x_{n}\right) \quad \Rightarrow \quad L=\sqrt{L} \Rightarrow L^{2}=L \quad \Rightarrow \\
L^{2}-L=0 \Rightarrow L(L-1)=0
\end{gathered}
$$

so $L=0$ or $L=1$.

Example

If $N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)$, find the fixed points under function iteration.

Example

If $N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)$, find the fixed points under function iteration.
Solution:

$$
L=\frac{1}{2}\left(L+\frac{5}{L}\right)
$$

Example

If $N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)$, find the fixed points under function iteration.
Solution:

$$
\begin{gathered}
L=\frac{1}{2}\left(L+\frac{5}{L}\right) \\
2 L=L+\frac{5}{L}
\end{gathered}
$$

Example

If $N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)$, find the fixed points under function iteration.
Solution:

$$
\begin{gathered}
L=\frac{1}{2}\left(L+\frac{5}{L}\right) \\
2 L=L+\frac{5}{L} \\
2 L^{2}=L^{2}+5
\end{gathered}
$$

Example

If $N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)$, find the fixed points under function iteration.
Solution:

$$
\begin{gathered}
L=\frac{1}{2}\left(L+\frac{5}{L}\right) \\
2 L=L+\frac{5}{L} \\
2 L^{2}=L^{2}+5 \\
L^{2}=5
\end{gathered}
$$

Example

If $N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)$, find the fixed points under function iteration.
Solution:

$$
\begin{gathered}
L=\frac{1}{2}\left(L+\frac{5}{L}\right) \\
2 L=L+\frac{5}{L} \\
2 L^{2}=L^{2}+5 \\
L^{2}=5 \\
L= \pm \sqrt{5}
\end{gathered}
$$

Example

If $N(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)$, find the fixed points under function iteration.
Solution:

$$
\begin{gathered}
L=\frac{1}{2}\left(L+\frac{5}{L}\right) \\
2 L=L+\frac{5}{L} \\
2 L^{2}=L^{2}+5 \\
L^{2}=5 \\
L= \pm \sqrt{5}
\end{gathered}
$$

If $x_{0}>0$, then $x_{n} \rightarrow \sqrt{5}$.

The previous example was our first dynamical system

The previous example was our first dynamical system

Definition

A dynamical system is:

- A set of points
- A rule for how to move them

The previous example was our first dynamical system

Definition

A dynamical system is:

- A set of points
- A rule for how to move them

A differential equation is a continuous dynamical system.

The previous example was our first dynamical system

Definition

A dynamical system is:

- A set of points
- A rule for how to move them

A differential equation is a continuous dynamical system.

Goal

Is it possible to predict the behavior of all points for all time (forward and back), given the current state and the rules?

A Few Mathematicians

Sir Isaac Newton
1643-1727
Developed Calculus Motion of the Planets

Grave at Westminster Abbey

Newton attended Trinity College at Cambridge, in particular in 1665 when the Great Plague started in London. He fled home, and during those years came up with the start of calculus.
(Newton, with or without the plague, was one of the greatest mathematicians of all time)

REPUBLIQUE FRANCAISE

- Best known for: investigating the stability of the solar system
- Laplace's equation:
$u_{x x}+u_{y y}=0$
- The Laplace transform in differential equations.
- Determinism
- Probability

Pierre-Simon Laplace

Laplace's Demon

"We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at any given moment knew all of the forces that animate nature and the mutual positions of the beings that compose it, if this intellect were vast enough to submit the data to analysis, could condense into a single formula the movement of the greatest bodies of the universe and that of the lightest atom; for such an intellect nothing could be uncertain and the future just like the past would be present before its eyes"

- marquis de Laplace (1814)

Henri Poincaré

- b. 1854-d. 1912
- King Oscar II of Sweden Contest to solve N-body problem (1890)
- Prize to Poincaré His paper led to what is now known as Chaos- A crossing of stable and unstable manifolds
- Poincaré Conjecture (1904) Every simply connected closed 3-manifold is homeomorphic to the 3 -sphere. Now solved (2006)

Pierre Fatou: 1878-1929

Gaston Julia: 1893-1978

Independently worked on iterations of complex map, 1920s

$$
z \rightarrow z^{2}+c
$$

Benoit Mandelbrot
1924-2010

A catalog of Julia Sets, which was basically forgotten until the 1970s.

- Continued and Proved some of Poincaré's work
- Statistical physics
- Ergodic Theorem

George David Birkhoff 1884-1944

The Lorenz Attractor

Edward N. Lorenz 1917-2008

Meteorology; Main paper: "Deterministic nonperiodic flow" (1963) Coined "Butterfly Effect" for Sensitive Dependence

- Proved Poincaré Conjecture for dimensions greater than 5 .
- Developed symbolic dynamics while down in Rio
- Fields Medal in 1966

Steve Smale
1930 (Age 93)

Sir Robert May 1936-2020
Ecology; Logistic Map

Mitchell Feigenbaum
Physics
Feigenbaum constant

Adrien Douady 1935-2006
Worked with his student John Hubbard at Cornell

The Douady Rabbit A Julia Set

Robert Devaney (Age 75) Boston University Student of Smale Exponential Maps

James Yorke (Age 82) University of Maryland "Period 3 Implies Chaos"

