Homework with 9.4

1. What is the difference between the "range", the"codomain", and the"image of the domain"?
2. Let $f(x)=1-2 x$. Show that f is $1-1$ and onto the real numbers, and show that it is continuous at $x=1$.
3. Let $f(x)=1-x^{2}$.
(a) Show (graphically and algebraically) that f is not 1-1.
(b) Find the image of the interval $[-1,2]$.
(c) Find the preimage of the interval $[1 / 4,3 / 4]$.
(d) Find intervals A so that $f^{2}(A)=[1 / 4,3 / 4]$.
(e) Let $A=[0,2]$ and $B=[-1,1]$. Show graphically what the following equation means (and algebraically, what is it?)

$$
f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)
$$

4. Show, by means of an example, that if f is not continuous, then the image of a closed interval could be either closed or open (an open interval is one that does not contain its endpoints) or neither.
5. As in our text, define

$$
I_{s_{0} s_{1}}=\left\{x \in I \mid x \in I_{s_{0}}, Q_{c}(x) \in I_{s_{1}}\right\}
$$

Show graphically (along the line $y=x$) where I_{01} is, and show that

$$
I_{01}=I_{0} \cap Q_{c}^{-1}\left(I_{1}\right)
$$

6. Continuing the last problem, show that:

$$
I_{010}=I_{0} \cap Q_{c}^{-1}\left(I_{10}\right)
$$

7. (Same notation as last two problems) Show that

$$
I_{010} \subset I_{01} \subset I_{0}
$$

8. Let g be defined piecewise as:

$$
g(x)=\left\{\begin{aligned}
x & \text { if } 0 \leq x \leq 1 \\
x-1 & \text { if } 2<x \leq 3
\end{aligned}\right.
$$

Define $g:[0,1] \cup(2,3] \rightarrow[0,2]$.
(a) Show that g is $1-1$ and onto (which makes g invertible).
(b) Find g^{-1} and conclude that g is continuous, but g^{-1} is not.

