Introduction to Matlab

. What is Matlab?

Matlab is a computer program designed to do mathematics. You might
think of it as a super-calculator. That is, once Matlab has been started,
you can enter computations, and Matlab will produce the results. Matlab
has many built-in programs and has some great graphics features that
we’ll discuss later.

. Starting the Matlab Program

The Matlab program physically resides on the computer named ”Hope”
in the math lab. To run Matlab, you do not have to be physically sitting
at Hope; you can be at any of the computer terminals.

Once you have logged into your particular machine, you’ll need to log into
Hope to make Matlab work. To do this, in your command window type:

ssh hope and you’ll be on that machine. Now just type matlab and
you’ll see the program start. The splashscreen will come up, and you’ll
get a command window that looks like:

<MATLAB>
Copyright 1984-2001 The MathWorks, Inc.
Version 6.1.0.450 Release 12.1
May 18 2001

To get started, select "MATLAB Help" from the Help menu.
>>

. How does Matlab work?

You can make Matlab do computations three different ways:

e Type commands directly into the keyboard.

e Have your Matlab commands typed into a seperate text file (called a
script file), and then have Matlab read these commands in. This is
very nice- it gives you documentation and allows you to run similar
computations several times without having to re-type the commands.

e Define your own functions by typing a seperate text file (called an
m-file).

. Saving your work

If you haven’t written a script file, but are doing your computations ”live”,
you may want to begin the session by typing: diary filename

All subsequent keyboard input and output will then not only be on the

computer monitor, but will also be saved as ”filename”. For example, if

you’re using Matlab for homework problem 3.1, you may use the command:
diary hw3_1 to save your work.

Important: The "diary” command must be used prior to typing in the
commands you want to save.

5. Matlab has a very nice text editor that you can use to type out and
save Matlab functions and scripts- To access the editor, type edit in the
Matlab command window.

2 Introductory Commands

1. Arithmetic

Matlab understands all of the basic arithmetic functions, +, -, *, /, ~
are addition, subtraction, multiplication, division and exponentiation. Type
them in just as you would write them. For example, 2° would be typed
as 275.

2. Trigonometric Functions

Matlab understands the basic trig functions sine, cosine and tangent as
sin , cos , tan . So, for example, the sine of 3.1 would be typed as:
sin(3.1)

The number 7 is used so frequently that Matlab has its (approximate)
value built-in as the constant pi. For example, sin(7) is typed as sin(pi).
Note that 7 uses a lowercase “P”.

3. Exponential and Logarithmic Functions

Matlab does not have the number e built-in. To take the number e to a
power, use the functional form: e* =exp(x) So if I want the number e, 1
would type exp(1), and so on.

For the natural log (log base €), use the notation log. For example, In(3)
is written as 1og(3). We will only use the natural log- if in the future you
want a different base, look up the log command by typing help log.

3 Arrays

In our computations, we will be producing large sets of numbers that we will
want the computer to remember. This is what an array is used for: An array
is a set of storage spaces that can be used to store numbers. (Side remark: If
you've seen matrices, an array is the computer equivalent of a matrix).

3.1 One dimensional arrays: Rows and Columns

For example, suppose I want the computer to remember the numbers: 1.1,4,3.2, 5.
In Matlab, I would type:

x=1[1.1, 4, 3.2, 5];

In this case, we say that the variable z is a one-dimensional array of 4 numbers.
The semicolon at the end of the command tells Matlab not to echo out the
command. See what happens if you leave the semicolon off. (HINT: You don’t
have to re-type the numbers, just use the "up” arrow on the keyboard!)

To access the it* number from an array, use parentheses. For example, if I
want the third number from the array named x above, I would type: x(3)

If I want to change the second number in the example from a 4 to a 7, 1
would type: x(2)=7

Matlab is also sensitive to how the data is typed in. In the first example, we
typed our data in as a row, but we could have produced a column:

x=1[1.1; 4; 3.2; 5];

The semicolon inside the brackets tells Matlab that this is a column instead of
a row. Accessing column elements looks the same as accessing row elements;
that is, the third element of the column is still x(3).

Some special commands associated with one dimensional arrays:

e a:b
Produces the integers from a to b in a row. For example, z = 2 : 9 puts =
as a row vector whose elements are the integers from 2 to 9.

e a:b:c
Produces the numbers from a to ¢ by adding b each time. For example,
1:2:7 returns the numbers 1,3,5,7. Type the following into Matlab to
see what you get: 1:2:8 and 1:0.5:6

e linspace(a,b,c)

Produces ¢ numbers evenly spaced from the number a to the number b.
For example, x=1inspace(2,3.5,40) produces 40 numbers evenly spaced
beginning with 2 and ending with 3.5.

SHORTCUT: Leaving off the third number ¢ will give you 100 numbers
between a and b (That is, ¢ = 100 is the default value.

3.2 Two dimensional arrays

The one dimensional array is really a special case of a two dimensional array.
A two dimensional array is a table of data. For example, we might have a table
of 4 rows of data, each 2 columns long, which we could enter into Matlab as:

x=1[1.1, 4; 3.2, 5; 1, 3; 4, 2.1];

In either case, we say that the size of the array is 4 x 2, read as ”Four by Two”.
So, one dimensional arrays are either 1 x n (for a row of n elements), or n x 1
(for a column of n elements).

NOTE: The array is the basic data type on which Matlab operates.

To access an element of a two dimensional array, you must specify two num-
bers: The row and the column. In our example above, the number 2.1 is in the
4th row, 2d column, so its position is (4,2). The number 3.2 is in the 2d row,
1st column, so its position is (2, 1).

In general, the (i, 7) element is accessed by writing x(i,j). For example, if
we want to change the (3,2) position from its current value of 3 to 7.212, we
would type: x(3,2)=7.212;

It is possible to define multidimensional arrays, but we will only use 1 and
2 dimensional arrays.

3.3 Matlab commands associated with Arrays

1. Creating Arrays.

e A=rand(m,n) Produces an m X n array of random numbers between
0 and 1.

e A=zeros(m,n) Produces an m X n array of zeros.

e A=ones(m,n) Produces an m x n array of ones.
2. Manipulating Arrays.

e Transposition. Transposition changes rows to columns, and vice
versa. It is denoted by the single quote character ’. For exam-
ple, if = is a row of n elements, then x’ is a column of n elements.
If Ais an m x n array, then A’ is an n X m array. It does this by
making the first column of the old matrix the first row of the new
matrix, and so on. Try it with a small matrix.

e Addition and Subtraction. These operations are defined only for
arrays of the same size. If A and B are m x n, then A 4+ B is also
m X n. The new array is obtained by adding the terms, element by
element, of the old arrays. For example, using Matlab notation:

A=[1, 2, -1; 3, 4, 0];
B=[4, -1, 0; 2, 1, 1];

Then A 4 B is a 2 x 3 array:

1+4 2-1 -1+0] _[5 1 -1
342 441 0+1 | |5 5 1

e Scalar addition. If we want to add a constant to every item in an
array, we do it in the usual way. In this example, A is an m x n array,
and we add 5 to every element: A+5

e Scalar Multiplication: We can multiply every number in the array by
a constant: If A is the array and c is the constant, we would write:
B=cx*A

e Array Multiplication. We can multiply and divide the elements of an
array A and an array B elementwise (so A and B must be the same
size): A.*B and A./B (NOTE: see that we used .* and ./. This is
because the regular * and / will have special meaning.)
Exponentiation is done in a similar way. To square every element of
an array A, we would write: A.~2 This is the same as saying A.*A

e Functions applied to arrays.

We can apply regular functions to arrays. For example, if x is the
array containing the numbers 1,2, 3,4, then sin(x) is the array con-
taining the numbers sin(1), sin(2), sin(3), sin(4). Similarly, exp(x) is
an array containing the numbers e', e?,e3,e?.

If we apply the function 22 + 32 4+ 5 to the array A, the Matlab
command would be:

A.72+3%A+5

3. Accessing Blocks of Values.

Let A be an m x n array of numbers. Then:

The notation: Yields:
A(i, 5) The (7, j)th element
A(i,) The entire ith row
A(2:5,:) The rows 2-5, all columns
Az, 9) The entire jth column
A(:,2:5) The 2d to fifth columns, all rows
A(1:4,2:3) A 4 x 2 submatrix

Question: What kind of an array would the following command produce?
A([1,3’6] b [2’5])

Answer: A 3 x 2 matrix consisting of the elements are:

A(1,2) A(1,5)
A(3,2) A(3,5)
A(6,2) A(6,5)

Example: Create a 5 x 5 zero array, and change it to:
0 0

coocoo
=R JITSG
=R ISl Sl
cwv o w
coocoo

I would use the follows sequence of commands:

A=zeros(5,5); Y%Create the matrix of zeros

b=[1 2 3;456; 7 8 9];
A(2:4,2:4)=b;
Note also the use of the % sign. It is used to denote comments; that is,

Matlab would ignore everything on the same line after the % sign.

Adding/Deleting Columns and Rows:

Its straightforward to insert and/or delete rows and columns into a matrix.
Before doing it, we define [] as ”the empty array”: the array with nothing

in it.

In the following, let A be a 4 x 5 array, let b be a 1 x 5 row, and ¢ be a
4 x 1 column.

Examples of use (each of these are independent from the previous):

A(1,:)=[1; Delete the first row.
A([1,3],:)=[]; Delete rows 1 and 3.
A(:,3)=[]; Delete the third column.
A(:,1:2:5)=[]; Delete the odd columns.
A(1,:)=b; Put b as the first row.
A(:,6)=c; Add c as the last column.

d=[c , A(:,1:3)]; Create a new array from c and the first three
columns of A.

A=[A(:,1), c, A(:,2:5)]; Insert c as the second column of A, shift
the other columns over.

A=[A(1,:); b; A(2:4,:)]; Insert b as the second row of A, shift
the other rows down one.

(NOTE: Note the difference in the use of comma or semicolon in the
last two items!)

3.4 Exercises with Arrays

1.

What is the Matlab command to create the array x which holds the inte-

gers:

2,5,8,11,...89

(Referring to the array above) What would the Matlab command be that
zeros out the even-numbered indices (That is, 2(2), x(4), z(6),...)?

What is the difference in Matlab (Try it!) between typing: x=[1 2 3]
and x=[1,2,3] and x=[1;2;3]7 What happens if you type a semicolon
at the end of the commands (i.e., x=[1 2 3];)7 For each of those, what
happens if you type x.~2+37 What happens if you forget the period (e.g.,
X"2+3)

4. Describe what each of the following sets of Matlab commands does (by
typing them in). Recall that typing a semicolon at the end of the line
suppresses Matlab output. To see the results, leave off the semicolon.

(a) a=pi:pi:8*pij;

(b) A=rand(3,4);
A([1,2],3)=zeros(2,1);
B=sin(A);

C=B+6;
D=2%B

(c) A=randn(2,4);
B=3%A";

(d) A=ones(3,3);
B=A./2

(e) A=[1,2,3;4,5,6];
B=sum(A.*4);

5. What is the Matlab command to perform the following:

(a) Given an array =, add 3 to each of its values.

(b) Given an array A, remove its first column and assign the result to a
new array B.

(c) If A is an array, what will sin(A) be?

4 Helpful Administrative Commands

The following commands are useful as you begin to use Matlab more and more:
who List all variables currently in use.
whos List all variables, and their sizes.
1s or dir List the contents of the current directory.

help command List the help file for the function command. For example,
to get help on the sine function, type help sin.

demo Lists all the demonstration programs that Matlab came with- This is
fun to look at. We don’t have all of them; you can go to Matlab’s website
to look at more: www.mathworks. com.

5 How do I get a Plot?

Here’s a quick example to get us started:

x=linspace(-pi,3*pi,200);
y=sin(x);
plot(x,y);

You'll see that we had to create a domain array and a range array for the
function. We then plot the arrays. For example,

will plot a line segment between the points (1, 3) and (2,4). So, Matlab’s plotting
feature is drawing small line segments between data points in the plane.

5.1 Examples

1. Matlab can also plot multiple functions on one graph. For example:

x1=linspace(-2,2);
yl=sin(x1);

y2=x1."2;
x2=linspace(-2,1);
y3=exp(x2);
plot(x1l,yl,x1,y2,x2,y3);

produces a single plot with all three functions.

2. plot(x1l,y1,’*=");
Plots the function y1, and also plots the symbol * where the data points
are.

3. plot(x1l,yl,’k*=’,x2,y3,’r =) ;

Plots the function y1 using a black (k) line with the asterisk at each data
point, PLUS plots the function y2 using a red line with red triangles at
each data point.

The following lists all of the built in colors and symbols that Matlab can
use in plotting: (NOTE: You can see this list anytime in Matlab by typing:

help plot)
Code Color Symbol

y yellow . point

m magenta o) circle

¢ cyan X x-mark

r red + plus

g green — solid

b blue * star

w white : dotted

k black —. dashdot
—— dashed

4. The following sequence of commands also puts on a legend, a title, and

5.2

relabels the z— and y—axes: Try it!

x=linspace(-2,2);

yl=sin(x);

y2=x."2;

plot(x,yl,’gx-’,x,y2,’k-.");
title(’Example One’);

legend(’The Sine Function’,’A Quadratic’);
xlabel(’Dollars’);

ylabel(’Sense’);

Other Things: If you look at the plotting window from the last example,
you’ll see lots of things that you can do. For example, there’s a zoom in
and a zoom out feature. You can also edit the colors and symbols of your
plot, and the title, legend and axis labels. Try them out!

Plotting in Three Dimensions

Matlab uses the plot3 command to plot in three dimensions. We won’t be using
this feature here. To get more information, either type help plot3 or refer to
the Matlab Graphics Manual.

5.3

1.
2.

Exercises
Let = be a row. What happens if you type plot(x)?
Write a Matlab command to plot y = €%, where —2 < z < 2.

Write a Matlab function to plot y = sin(x) in red, y = sin(2z) in black,
and y = sin(3z) in green, all on the same plot. You can assume that
x € [—4,8].

M-Files: Functions and Scripts

. What is a Matlab Function? A Matlab function is a sequence of commands

that uses some input variables and outputs some variables. The following
is a very simple Matlab function:

function y=square(x)

%FUNCTION Y=SQUARE(X)

%This function inputs a number or an array, and
% outputs the squares of the numbers.

y=x."2;

You would type this in a text editor, then save it as square.m (the filename
must be the same name as the function, and it must use the .m extension).

You'll notice that the first line states “function”. This is always the first
line of a Matlab function. The remarks that follow the first line are very
important. When you type help square, these three lines appear. So
when you write your own functions, you should include comments so that
you can remember how to use it.

The rest of the first line defines what the input variable is (x), and what
the output variable is (y).

. Multiple outputs: A Matlab function can produce multiple outputs. For
example:

function [A,b]l=randmatrix(n)

%FUNCTION [A,b]=RANDMATRIX(N)

%Produces an 2n x 2n random matrix A and a random
%column vector b.

nn=2%n;

A=rand(nn,nn) ;

b=rand(nn,1) ;

To call this function from Matlab, you would write, for example, [X,y]=randmatrix(10) ;

You'll notice that after running this program, the variables internal to the
function (in this case nn) disappear. This is one major difference between
a script and a function.

. A Script File A script file differs from a function file in that a script file
is a sequence of commands that are executed as if you were typing them in
at the keyboard. Therefore, all variables stay in accessible storage (unlike
when calling a function).

You should use script files for your homework problems- They give you a
record of the commands you used, and also make it easy to make small
changes. Here’s a sample:

Suppose my homework assignment is to use Matlab to produce plots of
the sine and cosine functions, with a title and a legend. Then my script
file would look like:

x=linspace(-3,7);

yl=sin(x);

y2=cos(x);

plot(x,y1,x,y2);
title(’Homework Problem 1°);
legend(’Sine’,’Cosine’);

10

I would type the commands into a text editor, then save it using the .m
extension. For example, I might save it as hwl.m

To run the script, in Matlab just type the filename. In this case, I would
just type hwl at the Matlab prompt.

7 Function Iteration

In our class, it will be important to be able to do function iteration. This will
be accomplished using what’s called a "for” loop. In words, we’ll want to do
something like:

Do the following set of commands 10 times:
command ;
command ;
command ;

End of the set.

In Matlab, this is accomplished by using the following syntax:

for i=1:10
command ;
command ;
command ;
end

The variable i is called the index of the loop. The computer uses this to keep
track of what iteration it is currently on. For example, try typing this in:

for i=2:7
i
end

When Matlab runs this, it outputs the integers from 2 to 7.
Example: Use a FOR loop to iterate the function y = /x 10 times, using
x = 0.99.

x=0.99;

for i=1:10
x=sqrt(x)

end

The problem with that solution is that we lose all of the intermediate values of
the function. A better way might be:

x=0.99;

for i=1:10
y(i)=sqrt(x);
x=y(i);

end

11

Now the array y holds all 10 numbers that were produced.

Example: Iterate the function z? + 1 10 times using the initial conditions
z=-1,2=0.3,z =0.9,x = 1.2 and plot the resulting orbits.

We could run a script similar to the previous example, but we can also do
everything at once. Instead of producing an array y for each condition, we’ll
make y a 10 x 4 array!

x=[-1, 0.3, 0.9, 1.2];
for i=1:10

y(i,:)=x."2+1;

x=y(i,:);
end
%plotting routines:
t=1:10;
plot(t,y(:,1),t,y(:,2),t,y(:,3),t,y(:,4));
legend(’x=-1’,’%x=0.3,°%=0.9’,’x=1.2);
title(’Orbits for Example’);

The first column holds the 10 numbers for the iteration starting with x = —1,
the next column holds the numbers for z = 0.3, and so on. Subsequently, we
plotted these values.

12

