
Homework Compilation
Chapter 11

This includes the homework previously assigned since Oct 16th, plus some extra material.

1. (Lyapunov Exponents) If p is a fixed point for f , what is the Lyapunov exponent for
any point whose orbit is attracted to p?

SOLUTION: We recall the definition of the Lyapunov Exponent for the orbit of x1:

h(x1) = lim
n→∞

ln |f ′(x1) + · · ·+ ln |f ′(xn)|
n

where f(x1) = x2, f(x3) = x3, etc. We will also use the Lemma that we discussed in
class: If {si}∞i=1 is a sequence that converges to s, then

lim
n→∞

1

n

n∑
i=1

si = s

Back to the homework question: If x1 is any point that converges to the attracting
fixed point p, then we will assume that f ′(x) is continuous so that, by continuity,

xn → p ⇒ f ′(xn) → f ′(p) ⇒ ln |f ′(xn)| → ln |f ′(p)|

We will also need to assume that f ′(xn) 6= 0 and f ′(p) 6= 0. Given that, we can use
the Lemma directly:

lim
n→∞

1

n

n∑
i=1

ln |f ′(xi)| = ln |f ′(p)|

2. (Sect 11, Exercise 1) Can a continuous function on IR have a periodic point of period
48 and not one of period 56? Why?

SOLUTION: Do a prime factorization:

48 = 24 · 3 56 = 23 · 7

In the Sarkovskii ordering, the odd numbers are in the first row, two times the odds
are second, 22 times the odds are third, so 56 is in the fourth row, and 48 is in the
fifth:

3 5 7 . . .
2 · 3 2 · 5 2 · 7 . . .
22 · 3 22 · 5 22 · 7 . . .
23 · 3 23 · 5 23 · 7 . . .
24 · 3 24 · 5 24 · 7 . . .

Therefore, a (continuous) function could have a periodic point with period 48 but not
56 (however, if it had a period 56 point, it would have to have a period 48 point).
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3. (Sect 11, Exercise 3) Give an example of a function F : [0, 1] → [0, 1] that has a
periodic point of period 3 and NO other periods (Hint: Can this happen?).

The main thing is that the function cannot be continuous. For example,

F (x) =


1/3 if x = 0
2/3 if x = 1/3
0 elsewhere

Notice that F does not intersect y = x, and the orbit of every point is eventually
periodic (so in particular, the orbit could not be of any other period).

4. (Sect 11, Exercise 4) Let f, g be piecewise linear functions where each has a cycle of
period 4 given by {0, 1, 2, 3}. In particular, define f as:

f(0) = 1 f(1) = 2 f(2) = 3 f(3) = 0

and g:
g(0) = 3 g(1) = 2 g(2) = 0 g(3) = 1

One of these functions has cycles of all other periods, and one has only periods 1, 2, 4.
Which is which? (They are easy to plot, but the graphs are given in Fig 11.16)

SOLUTION:

For the function f , we see that:

[0, 1] → [1, 2] → [2, 3] → [0, 3]

Therefore, f 3([0, 1]) ⊃ [0, 3], and so there must be a period 3 point in the interval [0, 1].
Is it prime period 3? Yes- It cannot be a fixed point since f([0, 1]) = [1, 2] and 1 is on
the 4-cycle. Similarly, it is not period 2, so the period three point is a prime period 3.

On the other hand, for the function g,

[0, 1] → [2, 3] → [0, 1]

So there is a period 2 point in [0, 1]. There is a 4-cycle (given), and the fixed point is
in the interval [1, 2]. So this function will be the second case (there will be no other
cycles).

5. (Added from the board) If f is piecewise linear so that f(1) = 2, f(2) = 3 and f(3) = 1,
find the interval (explicitly) that contains a period 4 point (The idea is to run through
the proof of the Period 3 theorem to find intervals I0, I1, A1, A2, A3, and A4).

First, I0 = [1, 2] and I1 = [2, 3]. Now, A1 was the preimage of I1 in I1 (graphically,
locate I1 on the y−axis and locate all the x’s in I1 that map to it). The preimage of
y = 2 is:

x + 1 = 2 or − 2x + 7 = 2 ⇒ x = 1 or x =
5

2
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Graphically, we see that the preimage of 3 is 2. Therefore,

A1 = f−1([2, 3]) ⇒ A1 =
[
2,

5

2

]

Now, A2 is the preimage of A1 in the interval I1, so locate A1 on the y−axis to help us
visualize what we need. Algebraically, we already have the preimage of x = 2 (which
was either 1 or 5/2), so now we just need the preimage of x = 5/2 using the second
line:

−2x + 7 =
5

2
⇒ x =

9

4
⇒ A2 =

[
9

4
,
5

2

]
The interval A3 is the preimage of A2 in I0, and A4 is the preimage of A3 in I1:

A3 =
[
5

4
,
3

2

]
A4 =

[
11

4
,
23

8

]
= [2.75, 2.875]

In conclusion, we have constructed an interval in which the period 4 point resides, since

f 4([2.75, 2.875]) = [2, 3] or f 4(A4) = I1

6. (Sect 11, Exercise 7) If f is piecewise linear so that

f(0) = 4 f(1) = 5 f(2) = 3 f(3) = 0 f(4) = 1 f(5) = 2

(See Fig 11.17(a)), prove that there is a cycle of period 6 but no cycles of any odd
period.

NOTE: First look to see if you can find why- For example, look for a three or five
cycle. The difficult part is in the interval [2, 3], since f has a fixed point there (it is
sufficient if you can see that there is no three or five cycle).

What you should see is something like:

[0, 1] → [4, 5] → [1, 2] → [3, 5] → [0, 2] → [3, 5] → [0, 2]

Notice what is happening? If we continue, we would see the same pattern...

Since f 3([0, 2]) = [3, 5] and f 3([3, 5]) = [0, 2], there are no three cycles (or cycles of any
odd period) in [0, 2] or in [3, 5]. The only interval left is [2, 3]. This interval contains
the fixed point.
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7. What was so special about Period 3? Why not period 4? Period 7?

Period three enabled us to separate the intervals between the points in the cycle in a
special way- Into I0 and I1 so that

Q(I0) = I1 Q(I1) = I0 ∪ I1

Once we are here, we can build up a cycle of any period.

8. Let F map points on the circle to the circle by rotating them π/3 radians.

Error: The rotation should be 2π/3

This is the note at the top of p. 139

(a) Are there any period 3 points? All points are period 3

(b) Are there any other (prime) periodic points? There are no other periodic points

(c) Does this contradict the Period Three theorem? No- F must map the real line to
the real line and be continuous.

9. Show that, if f is differentiable and decreasing for all x, then f 3 is decreasing.

Differentiate f 3 and show that the derivative is negative:

d

dt
f(f(f(t))) = f ′(f(f(t)))f ′(f(t))f ′(t)

Since f is decreasing, f ′ is negative, and the product of the three negative numbers in
negative.

10. Show that, if f is strictly decreasing and there is one fixed point of f , then there can
be no other fixed points.

NOTE: It is OK to assume that f is differentiable:

Suppose there were two fixed points, a and b. Then by the MVT,

f(b)− f(a)

b− a
= f ′(c)

for some c between a and b. Simplifying, this means that f ′(c) = 1- But f ′ < 0 at all
values of x. Therefore, we cannot have two fixed points.

11. Define Σa as the subset of Σ3 (the space of all symbol strings containing 0, 1 or 2)
where there are no double integers in the symbol string- That is, Σa cannot have 00,
11 or 22.
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(a) Show that Σa is closed in Σ (Prove that the complement is open- Look at how we
did it in class)

Let point s ∈ (Σa)
c. Then s must have a pair of zeros, a pair of ones and/or a

pair of twos. Let sk−1 = sk be the first positions of the pair. Let ε > 0 be some
arbitrary small number- We will show that every point that is within ε of s must
also be in the complement.

First, we need to modify the metric slightly (we did this in class):

d(s, t) =
∞∑

n=0

|sn − tn|
3n

In general, if we have Σm (the space of strings using symbols 0, 1, 2, . . . ,m − 1)
then the metric is typically taken to be:

d(s, t) =
∞∑

n=0

|sn − tn|
mn

This ensures that the sum converges (there are many other possible metric, how-
ever).

Back to the problem: Let k be chosen so that 1
3k < ε. Then by the Proximity

theorem (slightly modified), d(s, t) < 1/3k if and only if the first k symbols of s, t
match. Therefore, t must also have a pair of symbols,

sk−1 = sk ⇒ sk = tk−1 = tk

And, that shows that t is in the complement of Σa.

(b) Is Σa dense in Σ3?

No. For example, what is the closest distance to (22222222 · · ·)? The point in
Σa could match the first symbol, but not the second (or, more precisely, not the
first two). Therefore, the distance to the next closest point will be greater than
1/31 = 1/3.

(c) Is there a point in Σa whose orbit under σ is dense (in Σa)?

As we did before, we can list all the strings of length 1, all the strings of length
2, all the strings of length 3, etc. We do have to be careful when we concatenate
them, that we do not double up symbols. For example:

0 1 2 01 21 02 10 20 12 . . .

12. If f is continuous, and A is a closed interval, show that if f(A) ⊃ A, then A contains
a fixed point of f .
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Let A = [a, b]. Suppose f(a) < a. Since f(A) ⊃ A, there must be a point c so
that f(c) > c otherwise, f(x) < b for all x in [a, b] and f(A) would only contain
[a, b). Set g(x) = f(x) − x. Then g(a) = f(a) − a < 0 and g(c) = f(c) − c > 0,
so by the Intermediate Value Theorem, there is a point t between a and c so that
g(t) = f(t)− t = 0 (and that is the fixed point).

Alternatively, if f(a) > a, then there must be a point c in [a, b] so that f(c) = a < c,
because otherwise f(A) would not contain a. The rest of the argument is the same as
before.

13. Consider the following subsets of Σ2 (the space of all symbol strings containing either
0 or 1). Is either dense in Σ2?

(a) T1 = {(s0s1s2s30s5s6 · · ·)}
(b) T3 = {(s0s1s2 · · ·) | The sequence ends in all 0′s}

Note: For more, see pg 131

SOLUTION: These problems are here to help us with the definition of dense sets.
Recall that a set A is dense in a set X if, for any point x ∈ X, either x ∈ A or there is
a sequence in A that converges to X (alternatively, there is a point in A that is within
ε of x, for an arbitrarily small ε).

In the first case, if we choose

x = (s0s1s2s31s5s6 · · ·)

then x 6∈ T1, and the closest element of T1 is when all the symbols match x except for
s4 = 1. Thus, the distance to T1 is always greater than (or equal to) 1/24, and T1 is
not dense in Σ.

On the other hand, T3 will be dense in Σ- Let x be any point in Σ,

x = (s0s1s2 · · ·)

Then, if x ends in all zeros, then x ∈ Σ. If not, the following sequence in T3 converges
to x:

t1 = (s00000000 · · ·)
t2 = (s0s1000000 · · ·)

t3 = (s0s1s2000000 · · ·)
...

tn = (s0s1 · · · sn−100000 · · ·)
Therefore, T3 is dense in Σ.
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14. Let Σ′ be the set of all symbol strings of zeros and ones so that 0 is always followed by
1. Show that σ on Σ′ is chaotic.

Note: This is similar to Exercise 9, p 152. We want to show the three parts, (1)
the periodic points are dense, (2) the system is transitive, and (3) there is sensitive
dependence on initial conditions:

• Periodic points are dense: Let s ∈ Σ′ be given. Show that there is a sequence of
periodic points that converge to s (or show that there is a periodic point within
ε of s):

Define s = (s0s1s2 . . .) ∈ Σ′. Let ε > 0 be given. Then we can find k so that
1/2k < ε. Define a periodic point (within ε of s) by:

t = (s0s1 . . . sk)

There is an important technicality to consider: If s0 = 0 and sk = 0. In this
instance, take

t = (s0s1 . . . sksk+1)

for if sk = 0, then sk+1 = 1, and this is a valid periodic point.

• The easiest way to show that a dynamical system is transitive is to show that
there is a point (in this case, in Σ′) so that the orbit of that point is dense in
Σ′. We have constructed similar points before (once towards the bottom of page
116, and again in these exercises, see Exercise 11(c)). We build up this point in
a similar way- Again, just be sure that you end up with a point that does not
double up zeros:

s = 0 1 01 10 11 011 010 101 · · ·

In this case, as the others, this string contains all valid strings of any finite length.
Therefore, the orbit is dense.

Be sure you understand how this shows that the system is transitive

• Sensitive dependence on initial conditions: If s, t are different symbol strings,
there exists k so that sk 6= tk. At the kth iterate, d(σk(s), σk(t)) ≥ 1/20 = 1. (See
page 119 for more details).

15. Show that σ : Σ → Σ is continuous (using our usual metric d on Σ)

See bottom of page 105 It is basically just a consequence of the Proximity Theorem.

16. Let F : Σ → Σ so that
F (s0s1s2s3 · · ·) = (s0s2s4s5 · · ·)

Is F continuous on Σ?
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Error: This should be Exercise 18(f) in Chapter 9:

F (s0s1s2s3 · · ·) = (s0s2s4s6 · · ·)

SOLUTION:

Main Idea: To show continuity, we start with an ε > 0, and say that d(F (s), F (t)) < ε.
We want to show that we can find δ > 0 (usually as a function of ε), so that, if s, t are
within δ of each other, then f(s), f(t) must be within ε of each other.

We start by working backwards: Let ε > 0 be given, and let s be given. We will show
that F is continuous at s.

We can find k so that:

d(F (s), F (t)) <
1

2k
< ε

By the Proximity Theorem, the first k + 1 symbols of F (s) and F (t) are the same:

s0 = t0 s2 = t2, s4 = t4, . . . , s? = t?

The last term is the important one, since it tells us how many symbols of the original
string must be the same. For example, if k = 0, then we only have s0 = t0. If k = 1, we
have the previous, and s2 = t2. If k = 2, then we also have s4 = t4, and k = 3 means
we also have s6 = t6. That means, with a generic k, we have terms up to s2k = t2k.

CONCLUSION: If ε > 0 is given, determine k so that ε < 1
2k . Let δ = 1

22k .

Then:
d(s, t) < δ ⇒ sj = tj for j = 1, 2, . . . , 2k

In particular, all the even terms are the same:

s0 = t0, s2 = t2, . . . , s2k = t2k

Which means that

d(F (s), F (t)) <
1

2k
< ε

And therefore, F is continuous at any s ∈ Σ.
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