Homework Set 3 (Selected from Chapters 4-6)

1. The following sequences were given in the first homework set, and were found to converge for certain starting conditions. Interpret each as $a_{n+1}=F\left(a_{n}\right)$, and find the fixed points for F in each case, and whether or not they are attracting or repelling.
(a) $a_{n+1}=1 /\left(1+a_{n}\right)$
(b) $a_{n+1}=\frac{1}{2}\left(a_{n}+6\right)$
(c) $a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{c}{a_{n}}\right)$, where $c>0(c$ is fixed- Your limit will depend on $c)$.
2. Exercise $4(\mathrm{~d}, \mathrm{~g})$ on page 50 . To get a plot in Matlab, use the commands:
```
x=linspace(-4,4); %Creates an array for the domain
yd=sin(x); %For problem d
yg=x-x.^3; %For problem g- Be sure to use .^
figure(1)
plot(x,yd); %Use: plot(x,x,x,yd); to also plot y=x
figure(2)
plot(x,yg); %Use: plot(x,x,x,yg); to also plot y=x
```

3. Exercises $1(\mathrm{a}, \mathrm{b}, \mathrm{j}, \mathrm{k})$ on p . 67. Use Matlab for the sketches and describe the bifurcation (Two scripts are online- One does $1(c, d)$, the other does 1(e,f)- These are Ch6HW1.m and Ch6HW1e.m
4. Exercises 6-14 on p. 67. Use Matlab for the graphs, and just handsketch what you need when you write up the solutions.
