Exercises, 9.1-9.2

1. Let x, y be real numbers. Show that

$$d(x,y) = 2|x-y|$$

is a metric on the reals.

2. Let x, y be real numbers. Show that

$$d(x,y) = |xy|$$

does NOT define a metric.

- 3. Let f(x) = 1 2x. Prove that f is continuous at x = 1.
- 4. (Optional) Prove that $x^2 1$ is continuous at x = 1.
- 5. Compute d(s,t) for the following, where d is the metric on Σ as defined in our text:

(a)
$$s = (\overline{100})$$
 $t = (\overline{001})$
(b) $s = (\overline{1011})$ $t = (01\overline{01})$

- 6. Find the set of points in Σ whose distance from (0000000...) is exactly 1/2.
- 7. Prove the statement directly (without the Proximity Theorem): (i) Any point in M_0 must be at least 1 unit away from any point in M_1 . (ii) Any point in M_{00} must be at least 1/2 units from M_{01} .
- 8. Give an example of a sequence midway between $(000\cdots)$ and $(111\cdots)$. (Are there only 2?)