Exercises, 9.1-9.2

1. Let x, y be real numbers. Show that

$$
d(x, y)=2|x-y|
$$

is a metric on the reals.
2. Let x, y be real numbers. Show that

$$
d(x, y)=|x y|
$$

does NOT define a metric.
3. Let $f(x)=1-2 x$. Prove that f is continuous at $x=1$.
4. (Optional) Prove that $x^{2}-1$ is continuous at $x=1$.
5. Compute $d(s, t)$ for the following, where d is the metric on Σ as defined in our text:
(a) $s=(\overline{100}) \quad t=(\overline{001})$
(b) $s=(\overline{1011}) \quad t=(01 \overline{01})$
6. Find the set of points in Σ whose distance from ($0000000 \ldots$) is exactly $1 / 2$.
7. Prove the statement directly (without the Proximity Theorem): (i) Any point in M_{0} must be at least 1 unit away from any point in M_{1}. (ii) Any point in M_{00} must be at least $1 / 2$ units from M_{01}.
8. Give an example of a sequence midway between $(000 \cdots)$ and $(111 \cdots)$. (Are there only 2 ?)

