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Series Foreword

The MIT Press Essential Knowledge series offers accessible,
concise, beautifully produced pocket-size books on topics of
current interest. Written by leading thinkers, the books in
this series deliver expert overviews of subjects that range
from the cultural and the historical to the scientific and the
technical.

In today’s era of instant information gratification, we have
ready access to opinions, rationalizations, and superficial
descriptions. Much harder to come by is the foundational
knowledge that informs a principled understanding of the
world. Essential Knowledge books fill that need.
Synthesizing specialized subject matter for nonspecialists
and engaging critical topics through fundamentals, each of
these compact volumes offers readers a point of access to
complex ideas.



1

Large Language Models

In 1953, the famous Austrian philosopher Ludwig
Wittgenstein wrote in his Philosophical Investigations: “The
meaning of a word is its use in the language.”1 The US
linguist Rupert Firth rephrased this a bit more colloquially in
1957 as “you shall know a word by the company it keeps.”2

Little did these two men know that roughly seventy years
later, their casually appearing statements would underlie
highly complex algorithms affecting millions of people on
earth: language models.

Language models are everywhere in our modern digital
life. From typing in a query in Google or Bing, instructing Siri
to set a timer when you’re boiling an egg, asking Alexa to
switch on a light, and using the autocompletion in Whatsapp
messages, to conversations with a chatbot: language
models get the job done. Language models predict the
surfacing of a particular word given its neighboring ones.
They draw their knowledge about words from the statistical
analysis of vast amounts of textual data. When these
models get big (and we will discuss shortly what “big”
means), we call them large language models (LLMs).
Surprisingly, these models can do a lot more than just
generating words. They can even have conversations with
us humans.

We have come a long way. In the 1960’s, MIT computer
scientist Joseph Weizenbaum created what was probably the
first chatbot ever: ELIZA, a primitive, parrotlike
psychotherapist completely programmed by handwritten



rules that were triggered by specific keywords in the
sentences typed in by human “clients.” Currently, ELIZA still
lives on as a macro in the code editor Emacs (figure 1).

Figure 1 Eliza still lives on in the Emacs editor.

The author of this book was once involved as a student in
the development of the Dutch version of another landmark
chatbot: Q&A, short for question and answer, by Symantec.3

This system from the 1990s, premised on finicky, rule-based
grammar and largely programmed in the illustrious LISP
language, was able to support users in drafting reports
based on database information. It could answer queries like,
“Please provide all names and addresses of employees who
earn more than $80,000 and live in Amsterdam.” Following
these early natural language interfaces, we have seen IBM
Watson, Microsoft’s Twitter adaptive, self-learning chatbot
Tay, and a whole generation of scripted chatbots. You must
have come across many of these in online customer
services environments. As convincing as these systems
sometimes looked, they were seriously hampered by their
limited grasp of natural language, general inability to learn



from data, and limited set of communicative skills. None of
these systems could write a poem, make a joke, or engage
in a natural dialogue. And many of them were not based on
LLMs.

On November 30, 2022, ChatGPT was launched—an
interactive LLM with a chat interface produced by OpenAI.
ChatGPT generates texts through dialogues with a user. It is
the logical successor to a set of precursor models, also from
OpenAI: the GPT model family, comprising the members
GPT-1 and GPT-2. These models were produced by a type of
neural network architectures called Transformers (with GPT
meaning Generative Pretrained Transformer). While the
older GPT models were impressive by themselves and had
already shown impressive language generation capabilities,
the 2022 version of ChatGPT was something else. This
system is based on the updated model GPT-3.5 (followed a
few months later by GPT-4). ChatGPT is equipped with
dialogue management and “chat” facilities, including
mechanisms for building up conversational histories. These
mechanisms allow humans to collaborate interactively,
through dialogues, with the system on a text. In addition to
that, ChatGPT contains several other techniques for text
production. For instance, you can have ChatGPT generate a
poem in the style of John Keats about a specified topic and
then apply a more Shakespearean style, similar to style
transfer in images generated by artificial intelligence (AI)
(like applying Vincent van Gogh’s style to the Mona Lisa).
But there is more. You can also have ChatGPT generate
working computer codes from natural language, solve
mathematical puzzles, draw analogies between concepts,
and generate explanations. Some of these skills, as we will
see, are not among the core abilities of language models;
they seem to manifest themselves as a result of unknown
factors.



ChatGPT reached over 100 million users in three months,
and caused quite a stir in society, education, and science.
Its eloquence, authoritative manner, and sometimes eerily
natural responses have led certain people to fret that the
moment of singularity has come closer, with AI becoming
humanlike or even sentient. The LLM of the 2022 release of
ChatGPT was trained on a static (and huge) set of texts
(totaling 300 billion—that is, 300,000 million—words). These
data consist of web information, books, and a variety of
other textual resources. ChatGPT has been carefully fine-
tuned afterward by humans to provide appropriate
responses. On top of all of that, filters weeding out toxic
intents from users have been implemented (preventing, for
example, the generation of jokes about politicians or recipes
for making bombs).

Concerns on the societal consequences of ChatGPT and
anecdotes on derailing dialogues keep appearing in the
media. In higher education, the availability of ChatGPT has
generated a lot of worries. Students can use ChatGPT to
generate well-formulated texts on virtually any topic, with
different styles. These texts are oftentimes indistinguishable
from human-produced ones, making ChatGPT a risk factor
for plagiarism and fraud. Language models in general are
“paraphrase”-oriented; they generate fluent text on certain
topics, usually without disclosing their sources. This makes
them hard to trust from a factual perspective. Furthermore,
they can be biased by their data (“selection bias”),
architecture (“algorithm bias”), and the humans who train
or fine-tune them (“training bias”). But such biases cannot
always be easily detected or even prevented.

Language models in general are
“paraphrase”-oriented; they generate



fluent text on certain topics, usually
without disclosing their sources.

For actual users of these models like you and me, these
issues should not be purely academic. LLMs are becoming
increasingly embedded in the commercial software we use
daily, like word processors, mail clients, and conversational
services on the web. This should instill a healthy dose of
awareness in us, based on a sufficient understanding of how
these models are organized and what their strengths and
weaknesses are. This book aims to help you realize that
goal. Before we take another look at these—and other—
controversies, let’s discuss what a language model actually
is.

Imagine you have enrolled in an Italian for Beginners
course. Apart from the dreaded grammar drills and cringe of
getting those perky pronunciations right, your teacher may
confront you with a so-called Cloze test, a popular test for
second-language learners.4 In this case, the test consists of
showing you Italian sentences, with one or two words
blanked out. You, as a student, are asked to fill in the blanks.

• I fiori ___ vaso sono gialli (“the flowers in the vase are
yellow”). Fill in: nel, “in the.”

• ___ angeli ___ dipinto erano paffuti (“the angels on the
painting were puffy”). Fill in: sul, “on,” and gli, “the.”

When you perform this test, you mimic a language model.
Based on your—still rudimentary—knowledge of Italian and
the cues provided by the context, you may be able to fill in
the correct words for the blanks. A language model does
something similar. It digests huge amounts of words and
infers conditional or contextual probabilities from these
data, such as the probability that vaso most likely is



preceded by nel in the context of I fiori. Once it has been
exposed to data and all the relevant probabilities have been
computed, we can put language models in generation mode
and have them generate language. Or we can measure their
perplexity or surprise when confronted with a piece of
language they would not expect. This comes in handy when
we would like to recognize different languages—an English-
language model, for instance, would be surprised to see
Italian text. Perplexity can also be used to ascribe certain
texts to an author.

Language models come in different architectures.
Traditional language models build up explicit statistics using
conditional probabilities: the probability that a word follows
another word or a sequence of words. We call these models
statistical language models.

An example of such a language model is described by the
following, somewhat approximate formula:

This formula expresses the following: the joint probability
p(x1, .  .  .  ,xn) of the sequence of words x1, .  .  .  ,xn (that is,
the chance of observing these words together, as a
sequence) is a multiplication (or product, expressed by the
large Greek pi symbol) of so-called conditional probabilities,
which is the probabilities of observing word xi given an
unspecified quantity of words that precede xi, denoted
informally with x<i. In other words, for this model, the
probability of seeing a certain word in a word sequence
depends on the words that precede that word—its left
context. Many options are available here. You can express
conditional probabilities referring to any type of context you
like: words preceding, words following, combinations, and



restrictions on the amount of words that play a part in such
contexts. But how are these probabilities computed in the
first place? According to Bayesian statistics, conditional
word probabilities can be computed from simple counts of
single word frequencies and joint occurrences. That is, a
conditional probability p(word1 | word2) can be computed by
counting all joint occurrences of word1 and word2 and
dividing that quantity by the number of times we see word2:

p(cat | the) = number of times we observe
“the + cat” divided by the times we see

“the”

Suppose we would like to compute the probability of
observing a sentence like “The cat slept.” Assuming a
beginning-of-sentence marker like “<s>,” and a similar end-
of-sentence marker “</s>,” language models would
compute this probability as a multiplication of probabilities:

P(The | <s>)P(cat | <s>, The)P(slept | The,
cat) P(</s> | cat, slept)

Modern language models are created by deep learning:
the subfield of AI that learns from data with complex neural
networks. Neural networks are biology-inspired methods for
machine learning. They typically carve up data into small
pieces and distribute these across many computing units
called neurons. Neurons receive signals (data), manipulate
their incoming signals in a mathematical way, and send out
their results through weighted connections to other neurons,
arranged in layers. Neural networks learn from (usually
human-annotated—that is, preanalyzed) data and estimate
their weights accordingly. Figure 2 shows such a network.



Input neurons send their data through weighted
connections to a hidden layer of neurons, which sends its
output to an output layer. Such an output layer can express
the labeling of the input data. All weights are learned from
data. Complex neural architectures have been designed for
producing language models from raw textual data, and the
way they compute their statistics is determined by intricate
computations that go way beyond simple counting. The
resulting models are called neural language models.

Figure 2 A simple neural network.

A neural language model looking at left context computes
approximately the following probabilities:



This is the same formula as the one above, with a slight
difference: the introduction of a theta (θ) symbol. This
symbol expresses that the conditional word probabilities
now depend not just on the word context but also the extra
information: ingredients from a neural network. We will
discover in chapter 3 what those ingredients are.

In this book, when we talk about LLMs, we will typically
mean neural LLMs. At this point, we need to set some
terminology straight before we proceed. LLMs can, as we
will see, be trained in several ways. In fact, they go through
an entire curriculum, starting by doing a (tremendous)
amount of reading and then becoming trained for obeying
human instructions. Once done, some of them have reached
the gold medal status of AI assistant: they can assist us
humans in doing our work. The obvious examples are
ChatGPT, Copilot, and Gemini.5 But essentially these are still
LLMs. And the ones that do not complete the entire
curriculum are also just LLMs. We will make the distinction
clear as we go along. For now, just think of LLM as an
umbrella term.

Now, what makes a language model large? LLMs have
basically three dimensions that determine their size. First,
the number of words a model has been exposed to for
computing its probabilities (“data size”). Secondly, there is
the number of parameters—the neural weights—of the
neural network that produces the model (“parameter size”).
These parameters determine the complexity of the neural
network. The third dimension is the amount of computing
power needed to compute these weights from data
(“computing size”), specified in terms of GPU FLOPS: the
number of floating-point operations per second run by a
graphical processing unit, a processor on a graphical card
that is geared toward the complex computations deep
learning models tend to carry out (figure 3).



Figure 3 The three dimensions that determine the size of
neural language models: parameter, data, and computing
sizes (GPU FLOPS).

The first two dimensions are the ones usually reported in
scientific literature for models. As an example, ChatGPT,
based on GPT-3.5 (the name of the underlying LLM), has 175
billion parameters, and, as mentioned, was trained on 300
billion words.

Is a large LLM always better than a smaller LLM? Not
necessarily, at least not across all three dimensions. In fact,
many LLMs have disproportionately grown in their
parameter size but not in their data size. Nowadays, we
know that such underpopulated models are indeed
undertrained. They could do a lot better with a better
alignment of their parameter size to their data size. And
they can often be shrunk for parameter size as well without
major detrimental consequences. The exact balance
between parameter, data, and computing sizes is an acute
topic on the scientific research agenda, with the potential



benefit of smaller, more optimally balanced models rivaling
or even outperforming larger models. Having smaller
models do the same job with fewer resources (time, money,
and energy) is of course desirable!

In February 2023, New York Times tech journalist Kevin
Roose published his eerie experiences with ChatGPT, which,
at that time, had been linked to the Bing search engine by
Microsoft, a large investor in OpenAI.6 As one of the beta
testers of this combination, Roose had an intense question-
and-answer session with Bing. After some interactions, Bing
—through ChatGPT—revealed that its real name was Sydney
(which in fact was its prototype name given by its
engineers), and that it fully trusted the Bing team with
keeping it safe and sound. After this, Bing (or Sydney)
engaged in a grotesque dialogue about having a dark
“shadow self” (prompted by Roose), eventually leading to
the disclosure of evil actions such a shadow self would be
likely to perform, like overruling humankind or spreading
misinformation. Finally, the system got snarky about Roose’s
marriage and repeatedly declared its love to Roose, even
when Roose frantically tried to lure the model away from
this topic.

Anecdotes like these have sparked genuine concerns
about LLM-powered chatbots. And they are by no means
limited to the latest flurry of models. Back in 2016, we
witnessed a chatbot gone rogue: the aforementioned Twitter
chatbot Tay, by Microsoft. Over the course of one night, this
chatbot, which started out as a friendly conversational
agent with its own Twitter account, turned into a
misogynistic, antisemitic, and racist entity, apparently by
being able to learn from interactions with malevolent human
users. In 2022, Blenderbot by Meta produced fake news by
claiming that Joe Biden lost the US presidential elections in
2020 and that Donald Trump was currently serving his
second term. Similarly, Galactica, an LLM-based chatbot for



assisting scientists that was launched in November 2022 by
Meta, produced downright wrong or biased data. The public
demo was taken offline after a mere three days. Such
stories raise several urgent questions.

Given the fact that LLMs are becoming increasingly
prevalent in our digital lives, can we estimate the exact
capabilities of such models beforehand, so that we know
when to rely on them and when not to? This question has a
complicated answer. LLMs are to some extent stochastic
systems and perform a certain amount of random behavior
by design. Further, as mentioned before, LLMs display a
hitherto poorly understood capability of doing things they
were not explicitly trained to do. This is dubbed emergence:
the appearance of a quality (like a certain trait) above a
certain quantity (defined in terms of LLM size). It seems the
set of such emergent properties is by no means complete
and fleshed out, as some of these emergent properties lay
dormant in the sense that they can be triggered by showing
the model a few relevant examples. How should we deal
with these unexpected capabilities in real-world scenarios,
and are they truly emergent or just mirages, that is, rather
gradually manifesting capabilities? Are we looking at these
properties through the right glasses? Moreover, can LLMs be
creative thinkers, discovering new knowledge? Or do they
merely juggle existing knowledge, and is their creativity
limited to new combinations of old stuff?

LLMs are usually built from fixed snapshots of data. In
early 2023, ChatGPT had access to data only up to the year
2022. Data in an LLM are typically not manually inspected
and curated; the amount of data is just too vast for that.
This means that the actuality of LLMs is determined by the
data that went into them. Further, technically, it is not trivial
to force accurate facts (like database information) to
become part of generated text. To make things worse, LLMs
have been shown to dream up unexpected text. This



phenomenon also extends to question-and-answer
scenarios. How do we tie LLMs to the facts and have them
provide us insight into their underlying sources?

Here is another question. How can LLM-produced output
be identified as being synthetic? This is a valid question in
situations where originality and authorship matter (like in
education or creative writing). While attempts to insert
“digital watermarks” into generated texts are underway
(such as certain specific and unlikely word combinations,
revealing the hand of a language model), it is currently
unclear whether these facilities will result in sound and
complete solutions.

Other questions address the governance of LLMs and AI
sovereignty. Currently, only the big tech industry has the
data as well as the financial and computational capacities to
develop, train, and maintain these models at scale. But
these processes are often shrouded in mystery. Models are
built from often undisclosed data collections, hidden choices
for model size and model architecture design, and
undocumented usage of human effort for fine-tuning models
on human preferences. In addition, LLMs are subjected to
proprietary, company-defined ethical rules and principles,
which frequently are not made public either. Where does
that leave users of these models, with potentially
completely different ethical or legal paradigms? Can the vox
populi be factored into the production process of LLMs? How
can we inspect, evaluate, influence, and govern the models
that big tech hands us?

This book will attempt to guide you through the historical
and latest technological developments in this fast-paced
field, and to provide answers to the questions above. It will
discuss the current situation around LLMs at the time of this
writing: a disruptive manifestation of humanlike AI, causing
both concern and fascination in many audiences across the
globe, and with potential important ramifications for society.



We will delve into the technical inner workings of LLMs,
study their allegedly emergent abilities up close, and put
things into perspective: Under which circumstances and
conditions should we feel safe as well as entitled to use
these models in our daily life?



2

Language as a Computational
Phenomenon

Some people label themselves as “language people” rather
than “math people.” After all, what would poetry, the new
novel by Zadie Smith, the imperfect language of small
children, and your eloquent social media posts have to do
with computations on numbers and probabilities? As it turns
out, quite a lot! In this chapter, we will visit a few important
historical computational approaches to language analysis:
strands in the field of computational linguistics. This will
allow us to position LLMs amid the many other
computational approaches to analyzing language. Such
background is beneficial for understanding the roots of
LLMs, but you can scoot off to chapter 3 if you are eager to
learn more about their internal workings.

Language comes to us in sequences, like the consecutive
sounds in a speech signal or the text you are reading now,
word by word. Linguistic structure helps humans to interpret
such utterances. For instance, in most languages with
limited inflection, like English or Dutch, words do not just
appear in random order. Linguists call these languages
configurational; syntactic structure plays a large role in
determining which word orders are allowed or not. In
English, for example, the sentence “The boy bites the dog”
cannot mean that the dog bites the boy, contrary to “The
boy the dog bites.” Syntactic structure determines that
objects of transitive verbs like “to bite” follow their verb in
certain word orders. Languages that exhibit more liberal



word order, however, tend to have richer inflection for
compensation. For one thing, such rich inflection helps
determine grammatical roles like subject or object. As an
example, in the Australian language Wambaya, the following
six permutations of the same sentence are allowed, and
there is rich inflection helping to determine the meaning of
the construction:1

1. Dawu gin-a alaji janyi-ni
bite 3rd-sg-past boy-acc dog-erg
the dog bit the boy

2. Dawu gin-a janyini alaji
3. Alaji gin-a dawu janyi-ni
4. Alaji gin-a janyi-ni dawu
5. Janyini gin-a dawu alaji
6. Janyini gin-a alaji dawu

Here, the gin-a is a past tense indicator, connected to the
main verb dawu (to bite), of which the subject “dog” is
marked with ergative case, uniquely identifying it as the
agent of the action “to bite.” Notice that despite this liberal
word order, gin-a needs to stay in second position
everywhere.

Word choice is by no means a random process either. As
mentioned in chapter 1, linguists like Firth have proposed
the adage, “You shall know a word by the company it
keeps.” This can be interpreted as a statistical statement:
The probability of seeing a word surface in a text (or hearing
a word in spoken language) depends on its context, and
knowledge of the many contexts a word can (or cannot)
appear in determines your knowledge about that word.

Under this statistical view of the human language facility,
we humans develop, for every language we use, a language



model that allows us to predict words in context, helping us
to understand and produce language. Any such language
model is basically a statistical function that computes a
plausible completion of an incomplete utterance (a context),
based on observations of similar contexts and their
completions. Remember the Cloze test from chapter 1. This
test addresses such an internal model and is quite useful as
an educational tool for measuring the lexical capabilities of
second-language learners. This all seems to perfectly make
sense, and we are tempted to view a language model as a
software program running on our brain’s hardware, just like
the programs we use to process images and sounds. But
thinking about language as something that can be subjected
to computation did not occur overnight. How exactly, then,
did language meet up with mathematics, statistics, and
computation? It appears there are—at least—four pathways
at play that treat language as a computational
phenomenon, some of which can be linked to LLMs. We will
embark on a little journey that will lead us through these
pathways:

1. The generative school of linguistics founded by famed
Pennsylvanian linguist Zelig Harris in the 1950s and
continued by linguist Noam Chomsky.

2. The application of mathematical logic to language by
philosopher Kazimierz Ajdukiewicz in the 1930s and
notably mathematician Joachim Lambek in the 1960s,
leading to the paradigm of categorial grammar.

3. The statistical approaches to language analysis based
on mathematical work by mathematician Andrey Markov
and engineer Andrew Viterbi.

4. Approaches to language analysis based on machine
learning (which are essentially statistical by nature).



Generative Linguistics
In 1955, Chomsky, a former student of Harris’s who was at
the time working at MIT on a machine translation project,
published his dissertation “Transformational Analysis.” This
work was premised on the idea that observed linguistic
variations in a language can be generated from a small set
of configurations, typically laid out in a grammar, and a set
of transformations that generate controlled variations of
these base structures. This makes a grammar and its
associated transformations basically a computational
device, as Chomsky later specified: “The fundamental aim in
the linguistic analysis of a language L is to separate the
grammatical sequences which are the sentences of L from
the ungrammatical sequences which are not sentences of L.
The grammar of L will thus be a device that generates all of
the grammatical sequences of L and none of the
ungrammatical ones.”2

Figure 4

The influential linguistic paradigm of generative linguistics
that Chomsky built up in the following decades (see figure



4) makes a number of nontrivial claims about the linguistic
and cognitive capabilities of the human brain. They include
a plea for a universal grammar that is parameterized for
every language and obeys universal principles, and a
poverty of the stimulus hypothesis.

According to this hypothesis, children acquire their native
language based on an innate, parameterizable mechanism
for language acquisition, which is set to its correct
instantiation for a certain language based on a limited set of
only positive examples: the linguistic stimuli produced by
the environment of the child. Those stimuli are utterances
that help set certain parameters to their correct value, like
the order of a verb. In English, for instance, verbs follow
subjects (the so-called subject-verb-object [SVO] word
order). In Japanese, on the other hand, verbs are found at
the end of a sentence, making for a so-called SOV language.
For the order of subject, object, and verb, there are only six
possible permutations: SVO, SOV, VSO, VOS, OSV, and OVS.
Each of these permutations is found in natural languages,
which makes the position of the verb a parameter with six
values. Another tenet of generative linguistics is the
distinction between competence and performance.
Competence addresses a mental model of grammar that
reflects knowledge of a language, and performance relates
to the operationalization of such knowledge, constrained by
memory and other processing limitations. Generative
linguistics is multistratal, with clear roles for, say, syntax
and semantics.

Since LLMs appear to be able to learn languages quite
well, what does this imply for linguistic and cognitive
theories of human language acquisition? Principles and
parameters do not play an overt role in LLMs. They may
very well manifest themselves as statistical regularities,
hidden somewhere in the myriad probabilities computed by
LLMs, but they are not factored in explicitly by design. One



of the common criticisms that LLMs get from generative
linguists when presented as plausible theories of language
acquisition is that they need to consume billions of words
before they start showing off their magic. Yet we should not
forget that LLMs, like many AI models, are not designed
from the ground up as cognitively plausible models of
learning. LLMs are part of a class of invariant machine
learning algorithms; they need to observe many instances
of objects (in their case, words in context) to learn to
generate words in context. Invariant learning is also
performed by many AI-based image analysis algorithms, like
face or object detectors: systems that learn to recognize
(detect) a face or some object. Such models need to be
trained on numerous examples that differ in shape, scale,
rotation, color, and lighting conditions in order to become
invariant to changes in the data. This rather tedious learning
process is aggravated by the downright crude operation of
the so-called backpropagation process: a process for weight
optimization during artificial neural network learning (see
chapter 3). For every error a network makes during training,
all weights in the network will be updated. So effective
learning proceeds one item at a time, all items are
important, and standard neural networks need many items
to learn a concept. Such algorithmic crudeness is not shown
in the human brain.3

Contrastingly, so-called equivariant machine learning
models learn a topology: a model of the conceptual
structure of a certain class of objects. An equivariant face
detector would learn that a human face usually has a nose
below two eyes and above a mouth. In that sense, such
models infer a rendering instruction with which they can
deal with variation; they “render” an observation on the
basis of a generic topological template and need far less
examples for that. Equivariance seems a more natural,
cognitively more plausible way of learning, prompting



Geoffrey Hinton (the “godfather” of deep learning) and his
colleagues to propose a specific neural network architecture
precisely for this type of learning.4

Given that current LLMs are invariant learners, it may not
come as a surprise that they need that much data. Analysis
shows that ten to a hundred million words are necessary for
LLMs to acquire a good grasp of syntax and semantics,
including grammatical insight.5 The rest of the material
could be used for inferring commonsense knowledge about
the world and “metalearning” skills for natural language
understanding tasks like reasoning. This is certainly more
data than an infant is presented with during its primary
language learning phase but given the fact that LLMs are
not optimized per se for cognitively plausible learning, there
may be room for improvement. From a methodological
perspective, Chomskyan linguistics is a deductive theory. It
starts from principles, premises, and assumptions about
underlying structure. It subsequently attempts to infer
(explain, derive) observations from this starting point. In
contrast, LLMs may be seen as inductive formalisms. They
make no assumptions about the underlying data structure of
language. Any structure imposed on language is a
consequence of their inductive (as opposed to deductive)
behavior, and most derived structure is rooted in observed
co-occurrences of words in the huge amounts of their
training data.

LLMs are part of a class of invariant
machine learning algorithms; they need
to observe many instances of objects (in
their case, words in context) to learn to
generate words in context.



Cognitive scientist Steven Piantadosi discusses at length
the ongoing debate between generative linguists and
machine learning researchers working on LLMs, responding
to critical comments made by Chomsky and others about
the alleged “autocomplete”-like behavior of LLMs and their
lack of a theoretical foundation.6 His overall conclusion is
that LLMs bring a necessary change to linguistics by linking
an—albeit mainly motivated by engineering—processing
architecture to distributed representations and a principle-
free form of linguistics, stating, “There is nothing
comparable in all of linguistic theory to the power of Large
Language Models in both syntax and semantics.” He
emphasizes that LLMs blur the distinction between syntax
and semantics effectively by describing words and their
relationships in a uniform data space called a “vector space”
(more about that later) and thus embody a perspective on a
simpler theory of language than generative linguistics.
Hardly unexpected, researchers Jordan Kodner and
colleagues and Roni Katzir replied to Piantadosi with a wide
array of counterarguments defending the generativist
perspective.7

Whether humans deploy similar models and architectures
for learning language is still an unsettled issue. It is difficult
—and may be downright impossible—to infer something
about human brains from synthetic implementations like
LLMs unless the latter are faithful and minimal
characterizations (or even theories) of human cognitive
behavior. At this point, probably all we can say is that LLMs
are approximate models of the human language faculty,
mimicking some of human linguistic behavior. But at least
from an observational perspective, current LLMs outperform
more traditional models of grammar by a large margin in
terms of linguistic capabilities. Since the fields of machine
learning and cognitive science have been linked intimately
for decades, there is no reason to assume their future



interaction will not yield additional, mutually beneficial
insights into how language “works.”

To sum up, the generative linguistics paradigm has—
inadvertently—set the stage for an interesting and lively
debate in the LLM and linguistics research communities
about how humans (and machines) learn language from
observations.

Logic-Based Natural Language
Processing
Another computational perspective on language originates
from logic (figure 5). In so-called propositional logic, logical
inference is performed by constructing propositions: truth-
bearing statements like “Every computer needs electricity.”
A proposition can be true or false, or even partially true or
false, depending on a certain context.8

Every proposition P can be negated (“not P”), enter
conjunctive relations with other propositions (“P and Q”) or
disjunctive relations (“P or Q”), and, importantly, participate
in conditional relationships: “if P then Q,” in symbols “P ⊃
Q,” with “⊃” reading as “implies.” Such implication can be
defined in terms of negation and disjunction, incidentally: P
⊃ Q is logically equivalent to “not P or Q.” Implication allows
for deducing conclusions (Q) based on a premise (P): If we
have established the truth (whatever that means) of some
proposition P, and we have a condition that says, from P
being true we can infer Q being true, then infer Q. This
pattern of reason is called modus ponens, an essential
ingredient of propositional logic.


