Algebra Practice Problems

1. For each expression, factor out the greatest common factor. **Example:** $18x^5 + 6x^4 + 24x^3$.

SOLUTION: Factor each term first, then select common factors:

 $2 \cdot 3 \cdot 3 \cdot xxxxx - 2 \cdot 3 \cdot xxxx + 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot xxx$

There is a common 2, a common 3, then three common x's, so we can factor out $6x^3$:

$$18x^5 + 6x^4 + 24x^3 = 6x^3(3x^2 + x + 4)$$

- (a) $6px^2 8px^3 12px$
- (b) $60a^4b^3 15a^3b^4 + 45a^2b^5$
- (c) 2(a+b) + 4m(a+b)
- 2. Practice multiplying polynomials: Expand each expression.

Example: $(1+x)(2-x) = 2 - x + 2x - x^2 = 2 + x - x^2$

- (a) (2x+3)(x-5)
- (b) $(x+1)^2$
- (c) $(2x+1)(3x^2-x+4)$
- (d) (x-2)(x+2)
- 3. In the last two computations of the previous problem, did you notice a pattern? This is called a difference of squares- The pattern is:

$$a^2 - b^2 = (a - b)(a + b)$$

For each expression below, factor as a difference of squares:

- (a) $9x^2 25$
- (b) $81x^2 100$
- (c) 4 x (hint: $x = (\sqrt{x})^2$)
- 4. Factor each polynomial as (x a)(x b).

Notice that $(x - a)(x - b) = x^2 - (a + b)x + ab$, so when you look at a polynomial with a leading x^2 , we need a, b so that the sum is the middle term and the product is the last term.

A couple of examples:

- $x^2 5x + 6$: We need two numbers that sum to -5 and whose product is 6. I think they are -2 and -3, so: (x 2)(x 3) (you can multiply this out to check).
- $x^2 x 6$: Sum is -1 and product is -6: The two numbers are -3 and +2.

$$x^{2} - x - 6 = (x + 2)(x - 3)$$

Here are some for you to try:

(a) $x^{2} + x - 2$ (b) $x^{2} + x - 12$ (c) $x^{2} - x - 6$ (d) $x^2 - 16$

5. Write each expression in lowest terms:

Example: $\frac{8x^2 + 16x}{4x^2}$

SOLUTION: Factor, then we can cancel factors common to both numerator and denominator.

$$\frac{8x^2 + 16x}{4x^2} = \frac{8x(x+2)}{4x^2} = \frac{2(x+2)}{x}$$

(e)
$$\frac{x^2 - 4x + 4}{x^2 + x - 6}$$

(a) $\frac{20r+10}{30r+15}$ (b) $\frac{3t+15}{(t+5)(t-3)}$

(c) $\frac{3t+15}{(t+5)(t-3)}$ (d) $\frac{x^2-x-6}{x^2+x-12}$

6. Rationalize something of the form $\sqrt{a} - b$

Idea: To rewrite the expression $\sqrt{a} - b$ (and get rid of the square root in the numerator), multiply the expression by $(\sqrt{a} + b)/(\sqrt{a} + b)$. Example:

$$\sqrt{x} - a = \sqrt{x} - a \cdot \frac{\sqrt{x} + a}{\sqrt{x} + a} = \frac{x - a^2}{\sqrt{x} + a}$$

(a) $\sqrt{1+h} - 1$

(b)
$$\sqrt{x+h} - \sqrt{x}$$

(c)
$$\sqrt{x+3} - 2$$

- 7. Let f, g be given. Compute $f \circ g$.
 - (a) f(x) = 2x 1 and g(x) = 3x + 1
 - (b) f(x) = 1/x and $g(x) = x^2$
 - (c) $f(x) = \sqrt{x+1}$ and $g(x) = \frac{8}{x}$.

8. In each of the following h is given. Find functions f, g so that $h(x) = f(g(x)) = (f \circ g)(x)$.

(a)
$$h(x) = (6x - 2)^3$$

(b) $h(x) = \frac{1}{x^2 + 2}$
(c) $h(x) = \frac{(x - 2)^2 + 1}{5 - (x - 2)^2}$
(d) $(x + 2)^3 - 3(x - 2)^2$