Algebra Practice Problems

1. For each expression, factor out the greatest common factor.

Example: $18 x^{5}+6 x^{4}+24 x^{3}$.
SOLUTION: Factor each term first, then select common factors:

$$
2 \cdot 3 \cdot 3 \cdot x x x x x-2 \cdot 3 \cdot x x x x+2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot x x x
$$

There is a common 2 , a common 3 , then three common x 's, so we can factor out $6 x^{3}$:

$$
18 x^{5}+6 x^{4}+24 x^{3}=6 x^{3}\left(3 x^{2}+x+4\right)
$$

(a) $6 p x^{2}-8 p x^{3}-12 p x$
(b) $60 a^{4} b^{3}-15 a^{3} b^{4}+45 a^{2} b^{5}$
(c) $2(a+b)+4 m(a+b)$
2. Practice multiplying polynomials: Expand each expression.

Example: $(1+x)(2-x)=2-x+2 x-x^{2}=2+x-x^{2}$
(a) $(2 x+3)(x-5)$
(b) $(x+1)^{2}$
(c) $(2 x+1)\left(3 x^{2}-x+4\right)$
(d) $(x-2)(x+2)$
3. In the last two computations of the previous problem, did you notice a pattern? This is called a difference of squares- The pattern is:

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

For each expression below, factor as a difference of squares:
(a) $9 x^{2}-25$
(b) $81 x^{2}-100$
(c) $4-x$ (hint: $\left.x=(\sqrt{x})^{2}\right)$
4. Factor each polynomial as $(x-a)(x-b)$.

Notice that $(x-a)(x-b)=x^{2}-(a+b) x+a b$, so when you look at a polynomial with a leading x^{2}, we need a, b so that the sum is the middle term and the product is the last term.
A couple of examples:

- $x^{2}-5 x+6$: We need two numbers that sum to -5 and whose product is 6 . I think they are -2 and -3 , so: $(x-2)(x-3)$ (you can multiply this out to check).
- $x^{2}-x-6$: Sum is -1 and product is -6 : The two numbers are -3 and +2 .

$$
x^{2}-x-6=(x+2)(x-3)
$$

Here are some for you to try:
(a) $x^{2}+x-2$
(b) $x^{2}+x-12$
(c) $x^{2}-x-6$
(d) $x^{2}-16$
5. Write each expression in lowest terms:

Example: $\frac{8 x^{2}+16 x}{4 x^{2}}$
SOLUTION: Factor, then we can cancel factors common to both numerator and denominator.

$$
\frac{8 x^{2}+16 x}{4 x^{2}}=\frac{8 x(x+2)}{4 x^{2}}=\frac{2(x+2)}{x}
$$

(a) $\frac{20 r+10}{30 r+15}$
(b) $\frac{3 t+15}{(t+5)(t-3)}$
(c) $\frac{3 t+15}{(t+5)(t-3)}$
(d) $\frac{x^{2}-x-6}{x^{2}+x-12}$
(e) $\frac{x^{2}-4 x+4}{x^{2}+x-6}$
6. Rationalize something of the form $\sqrt{a}-b$

Idea: To rewrite the expression $\sqrt{a}-b$ (and get rid of the square root in the numerator), multiply the expression by $(\sqrt{a}+b) /(\sqrt{a}+b)$. Example:

$$
\sqrt{x}-a=\sqrt{x}-a \cdot \frac{\sqrt{x}+a}{\sqrt{x}+a}=\frac{x-a^{2}}{\sqrt{x}+a}
$$

(a) $\sqrt{1+h}-1$
(b) $\sqrt{x+h}-\sqrt{x}$
(c) $\sqrt{x+3}-2$
7. Let f, g be given. Compute $f \circ g$.
(a) $f(x)=2 x-1$ and $g(x)=3 x+1$
(b) $f(x)=1 / x$ and $g(x)=x^{2}$
(c) $f(x)=\sqrt{x+1}$ and $g(x)=\frac{8}{x}$.
8. In each of the following h is given. Find functions f, g so that $h(x)=f(g(x))=(f \circ g)(x)$.
(a) $h(x)=(6 x-2)^{3}$
(b) $h(x)=\frac{1}{x^{2}+2}$
(c) $h(x)=\frac{(x-2)^{2}+1}{5-(x-2)^{2}}$
(d) $(x+2)^{3}-3(x-2)^{2}$

