Algebra Practice Problems (Set 2)

First, a couple of examples where we "solve for x ":

- Solve $\left(\frac{1}{3}\right)^{x}=81$

SOLUTION: By making a common base between the left and right sides of the equation, we can equate the exponents. It looks like we can write both as powers of 3:

$$
\left(\frac{1}{3}\right)^{x}=3^{-x}
$$

And on the other side:

$$
81=9^{2}=3^{4}
$$

Now we can rewrite the equation as: $3^{-x}=3^{4}$, so that $x=-4$.

- Solve for b, if $81=b^{4 / 3}$.

SOLUTION:

$$
\begin{aligned}
81 & =b^{4 / 3} \\
81^{3 / 4} & =b^{1} \\
\left(3^{4}\right)^{3 / 4} & =b \\
3^{3} & =b \\
27 & =b
\end{aligned}
$$

1. See if you can use these example (and the rules of exponents) to solve for x in each of the following:
(a) $4^{x}=2$
(b) $\left(\frac{2}{3}\right)^{x}=\frac{9}{4}$
(c) $5^{2 p+1}=25$
(d) $32^{x}=16^{1-x}$
(e) $\left(\frac{1}{8}\right)^{-2 p}=2^{p+3}$
2. Use the rules of exponents (and fractions) to simplify as much as possible (all exponents should be positive):
(a) $\frac{5 x^{2} y}{x+y} \div \frac{30 x y^{2}}{3 x+3 y}$
(b) $\frac{y^{5 / 3} y^{-2}}{y^{-5 / 6}}$
(c) $\frac{\frac{1}{p}+\frac{1}{q}}{1-\frac{1}{p q}}$
(d) $\frac{k^{2}+k}{8 k^{3}} \cdot \frac{4}{k^{2}-1}$
(e) $\frac{1}{4 y}+\frac{8}{5 y}$
