Algebra Practice Set 3

Recall the properties of exponents:

$$
a^{b+c}=a^{b} a^{c} \quad\left(a^{b}\right)^{c}=a^{b c} \quad a^{-b}=\frac{1}{a^{b}} \quad a^{b-c}=a^{b} / a^{c}
$$

Relationship between logs and exponents:

$$
a^{b}=c \text { is the same as } \log _{a}(c)=b
$$

Rules for logs:

$$
\log (a b)=\log (a)+\log (b) \quad \log (a / b)=\log (a)-\log (b) \quad \log \left(a^{b}\right)=b \log (a) \quad \log _{a}(b)=\frac{\ln (b)}{\ln (a)}
$$

Below are some exercises to help you practice these rules:

1. Write each expression in logarithmic form
(a) $a^{b}=c$
(b) $100^{1 / 2}=10$
(c) $(3 / 4)^{-1}=4 / 3$
(d) $2^{5}=32$
2. Write each expression in exponential form
(a) $\log _{a}(b)=c$
(b) $\log _{10}(0.001)=-3$
(c) $\log _{2}(\sqrt{32})=5 / 2$
3. Solve each equation:
(a) $10^{2 r-3}=17$
(c) $(1 / 2)^{3 k+1}=3$
(b) $\log _{2}(y+3)=5$
(d) $\ln (6 x)-\ln (x+1)=\ln (4)$
4. Use properties of logs to write each as a sum, difference or product of logarithms:
(a) $\log _{3}\left(\frac{m n}{5 r}\right)$
(b) $\log _{2}\left(\frac{\sqrt{7}}{15}\right)$
(c) $\log _{5}\left(x^{2} y^{4} \sqrt[5]{m^{3} p}\right)$
(d) $\log _{7}\left(7 k+5 r^{2}\right)$
5. Simplify: $\mathrm{e}^{a \ln (b)}$
