\qquad

No calculators or notes allowed. Please show all your work (an answer with no justification will may not get credit).

1. Find functions f, g so that $h=f \circ g$:
(a) $h(x)=\left(2 x+x^{2}\right)^{3}$
(b) $h(x)=3^{x^{2}+2 x+1}$
2. The function $y=f(x)$ with graphs 1-5 are shown. Match each equation with its graph:
(a) $y=f(x-4)$
(b) $y=f(x)+3$
(c) $y=\frac{1}{3} f(x)$
(d) $y=-f(x+4)$
(e) $y=2 f(x+6)$

3. If $f(x)=3 x-2$ and $g(x)=x^{2}+x$, compute an expression for $f \circ g$ and $g \circ g$ (you do not need to simplify).
4. Evaluate the limit algebraically, if it exists: $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}=$
5. In the graph, f is the solid curve, g is the dashed curve.

Comparing average rate of change of two functions. Consider the graphs of $f(x)$ and $g(x)$ below:

For each interval given below, decide whether the average rate of change of $f(x)$ or $g(x)$ is greater over that particular interval.

Interval	Which function has GREATER average rate of change?
$0 \leq x \leq 4$	($\square \mathrm{f} \quad \square \mathrm{g} \quad \square$ both have an equal rate of change)
$0 \leq x \leq 8$	($\square \mathrm{f} \quad \square \mathrm{g} \quad \square$ both have an equal rate of change)
$0 \leq x \leq 2.2$	($\square \mathrm{f} \quad \square \mathrm{g} \quad \square$ both have an equal rate of change)
$5.2 \leq x \leq 6.1$	($\square \mathrm{f} \quad \square \mathrm{g} \quad \square$ both have an equal rate of change)
$5.2 \leq x \leq 6.9$	($\square \mathrm{f} \quad \square \mathrm{g} \quad \square$ both have an equal rate of change)

6. Let

$$
f(x)= \begin{cases}x^{2}-4, & \text { if } 0 \leq x<4 \\ 4 & \text { if } x=4 \\ 3 x-6 & \text { if } x>4\end{cases}
$$

Evaluate each of the quantities below. If the quantity does not exist, put DNE.

$$
\lim _{x \rightarrow 4^{+}} f(x)=\quad \lim _{x \rightarrow 4^{-}} f(x)=\quad f(4)=\quad \lim _{x \rightarrow 4} f(x)=
$$

7. The graph of $g(x)$ is given below (graph to scale).

Answer the following questions about g. If the quantity does not exist, put DNE.

$$
\lim _{x \rightarrow 4^{-}} g(x)=\quad g(4)=\quad \lim _{x \rightarrow-1} g(x)=\quad \lim _{x \rightarrow-2} g(x)=
$$

8. Compute $f^{\prime}(1)$, if $f(x)=x^{2}-3 x$. (You must use the definition of $f^{\prime}(1)$ to receive credit).
