\qquad

No calculators or notes allowed. Please show all your work (an answer with no justification will may not get credit).

1. Below are the graphs of the derivatives of two functions, f and g.

$$
g^{\prime}(x)
$$

$$
f^{\prime}(x)
$$

For each statement, write True if the statement must be true, write False if the statement must be false. If there is not enough information (if the statement might be true and might be false), write NED.
Also include a short reason for each.
(a) $g^{\prime \prime}(x)$ is a decreasing function.
(b) $f(x)$ is a decreasing function.
(c) $g(x)$ is increasing on the interval $[-2,2]$.
(d) The largest value of $f(x)$ on $[-2,2]$ is $f(-2)$.
(e) $g(x)$ is always concave down.
2. Find k so that the following function is continuous:

$$
f(x)=\left\{\begin{aligned}
k x & \text { if } 0 \leq x<2 \\
3 x^{2} & \text { if } x \geq 2
\end{aligned}\right.
$$

If you get stuck, for partial credit state the definition of continuity of f at $x=a$.
3. If $f(3)=-1$ and $f^{\prime}(3)=2$, then estimate the value of $f(3.1)$ using the tangent line approximation to f at $x=3$.
4. A can of soda has been in a refrigerator for several days; the refrigerator has been set to $4^{\circ} \mathrm{C}$. Upon removal, the soda is placed on a kitchen table where the temperature is a constant $22^{\circ} \mathrm{C}$. One hour later, the temperature of the soda is 10°.
If $F(t)=a \cdot b^{t}+c$ is the temperature (in Celsius) at time t (in hours), find the (exact) values of a, b, c.
5. (a) Write the expression in logarithmic form: $100^{1 / 2}=10$.
(b) Write the expression in exponential form: $\log _{10}(1 / 100)=-2$
6. Solve each equation, and leave your answer in exact form:
(a) $4-\ln (3-x)=0$
(b) $4 \cdot 3^{2 x+1}=8$
7. Suppose that the population at time t (in days) is modeled by the function $P(t)=A \mathrm{e}^{k t}$. If the initial population is 6 and the doubling time is 5 days, then find exact values of A and k :

