M124	
Fall	2023

Quiz 6

Name:_____

No notes are allowed, but you may use a calculator for numerical work only (no graphing). Be sure to show all your work- your reasoning is very important.

1. Consider the graph of velocity given below, and assume the curves are straight lines or portions of circles.

- (a) Find the object's position at times t = 2, 4, 6:
- (b) If s(t) is the position function, what is the value of s(5) s(2)?
- (c) On which time interval(s) is the **position** function s(t) increasing?
- (d) At which point(s) does the **position** function s(t) achieve a local maximum?
- 2. For each sum written in sigma notation, expand the sum out (you don't need to evaluate the sum). For each sum written in expanded form, write using sigma notation.
 - (a) $\sum_{k=1}^{4} 3 =$
 - (b) 1 + 2 + 4 + 8 + 16 + 32 =

(c)
$$\sum_{j=3}^{6} (-1)^j j^2 =$$

(d) $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \dots + \frac{10}{11} =$

3. A car traveling along a straight road is braking and its velocity is measured at several different points in time, as given in the following table, where t is measured in seconds and v(t) is measured in feet/sec.

(a) Estimate the total distance traveled during the car the time brakes using a middle Riemann sum with 3 subintervals. You may leave the sum unevaluated.

(b) Estimate the total distance traveled on [0, 1.8] by writing the sums for L_6 and R_6 . You may leave the sums unevaluated.

- 4. Consider $f(x) = x^2$ on the interval [2, 4].
 - (a) Estimate the area under the curve by using 4 rectangles, and write the sum for R_4 . You can leave the sum unevaluated.

(b) Will R_4 be an overestimate or underestimate?

5. If $\int_0^{10} f(x) dx = 8$ and $\int_0^6 f(x) dx = 5$, then compute the following using properties of the definite integral:

(a)
$$\int_{10}^{0} f(x) dx =$$

(b) $\int_{0}^{10} 2f(x) dx =$
(c) $\int_{6}^{10} f(x) dx =$

6. Use the Fundamental Theorem of Calculus to evaluate the following definite integrals. Note that sometimes you'll need to do some algebra first.

(a)
$$\int_{-1}^{1} (3x^2 - 2x) \, dx =$$

(b)
$$\int_{1}^{3} \frac{x^2 - x}{x} \, dx =$$

(c)
$$\int_{1}^{4} \sqrt{x} \, dx =$$

(d)
$$\int_0^{\pi/2} \cos(x) \, dx =$$