Name:_____

I certify that the work on this exam is my own and that I have not discussed the specific contents of this exam with anyone prior to taking it.

Initials:

Instructions: No calculators are allowed, and no notes beyond what is provided here. Answers with no appropriate justification will receive no credit.

- 1. Find the domain of $f(x) = \frac{\sqrt{x^2 1}}{x 2}$
- 2. Evaluate the following:

(a)
$$\sin(5\pi/12)$$
 (b) $\tan^{-1}(1/\sqrt{3})$ (c) $\log_5(1/\sqrt[3]{25})$

- 3. True or False (and give a short reason):
 - (a) If f is continuous at x = a, then f is differentiable at x = a.
 - (b) If $3 \le f(x) \le 5$ for all x, then $6 \le \int_1^3 f(x) \, dx \le 10$.
 - (c) All continuous functions have antiderivatives.

(d)
$$\int_{-2}^{1} -x^{-2} dx = x^{-1} \Big|_{-2}^{1} = \frac{3}{2}$$

- 4. Find f'(2) directly from the definition of the derivative, if $f(x) = \frac{1}{x}$ (you may not use l'Hospital's rule).
- 5. Compute the following limits, where you may not use l'Hospital's rule:

(a)
$$\lim_{x \to 2} \frac{x^2 - x - 2}{x - 2}$$
 (b) $\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}$

6. Find the limit, if it exists (you may use any technique from class):

(a)
$$\lim_{x \to -\infty} \sqrt{\frac{2x^2 - 1}{x + 8x^2}}$$
 (b) $\lim_{x \to 9} \frac{\sqrt{x}}{x - 9}$

7. Differentiate:

(a)
$$\frac{2x}{\sqrt{x^2+1}}$$
 (b) $y = \sin^3(x^2+1)$ (c) $y = x^x$

- 8. Find the equation of the tangent line to $\sqrt{x+y} = \frac{1}{2}xy$ at the point (2,2).
- 9. Evaluate the Riemann sum by first writing it as an appropriate definite integral: $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1 + \frac{3i}{n}}.$

10. Differentiate:
$$F(x) = \int_{\sqrt{x}}^{x^2} \frac{t}{1+t} dt$$

11. Write the definite integral as an appropriate Riemann sum (using right endpoints): $\int_0^3 1 + 3x^2 dx$

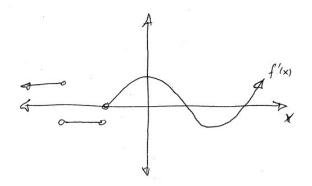
12. Evaluate, or find the general indefinite integral.

(a)
$$\int \sqrt{x^3} + \frac{1}{x^2 + 1} dx$$
 (b) $\int_{-1}^{1} t(1 - t) dt$ (c) $\int_{0}^{1} 5x - 5^x dx$

13. Evaluate:

(a)
$$\int_0^1 \frac{d}{dx} \left(e^{\tan^{-1}(x)} \right) dx$$
 (b) $\frac{d}{dx} \int_0^1 e^{\tan^{-1}(x)} dx$ (c) $\frac{d}{dx} \int_0^x e^{\tan^{-1}(t)} dt$

- 14. Given the graph of the derivative, f'(x), below, answer the following questions:
 - (a) Find all intervals on which f is increasing.
 - (b) Find all intervals on which f is concave up.
 - (c) Sketch a possible graph of f if we require that f(0) = -1.



- 15. A rectangle is to be inscribed between the x-axis and the upper part of the graph of $y = 8-x^2$ (symmetric about the y-axis). For example, one such rectangle might have vertices: (1,0), (1,7), (-1,7), (-1,0) which would have an area of 14. Find the dimensions of the rectangle that will give the largest area.
- 16. Find all values of c and d so that f is continuous at all real numbers:

$$f(x) = \begin{cases} 2x^2 - 1 & \text{if } x < 0\\ cx + d & \text{if } 0 \le x \le 1\\ \sqrt{x+3} & \text{if } x > 1 \end{cases}$$

Be sure it is clear from your work that you understand the definition of continuity.

- 17. A perfectly round balloon is being inflated at a rate of 2000 cubic cm pepr second. How fast is the radius of the balloon increasing when the radius is 10 cm? (Volume of a sphere is $V = \frac{4}{3}\pi r^3$).
- 18. Suppose that over 45 months, the amount of radioactive element in a sample goes from 4 grams to $\frac{1}{2}$ gram. (i) Find a formula for the amount present at any time t. (ii) What is the half-life of the element? (Leave answers in exact form)