Table of Derivatives and Differentiation Technique

6/	(1/	f(x)	f'(x)
f(x)	$ \begin{array}{ c c } \hline f'(x) \\ \hline 0 \\ nx^{n-1} \\ e^x \\ \frac{1}{x} \end{array} $	$\sin(x)$	$\cos(x)$
c		$\cos(x)$	$-\sin(x)$
x^n		tan(x)	$\sec^2(x)$
e^x $ln(x)$		$\cot(x)$	$-\csc^2(x)$
		sec(x)	$\sec(x)\tan(x)$
$a^x \\ \log_a(x)$	$\begin{vmatrix} a^x \ln(a) \\ \frac{1}{x \ln(a)} \end{vmatrix}$	$\csc(x)$	$-\csc(x)\cot(x)$
		$\sin^{-1}(x)$	$\frac{1}{\sqrt{1-x^2}}$
		$\tan^{-1}(x)$	$\frac{1}{1+x^2}$

And for general functions:

f(x)	f'(x)	
cf	cf'	
$f \pm g$	$f' \pm g'$	Sum Rule
$f \cdot g$	f'g + fg'	Product Rule
1/g	$-rac{g'}{q^2}$	Reciprocal Rule
f/g	$\frac{-\frac{5}{g^2}}{\frac{f'g - fg'}{g^2}}$	Quotient Rule
f(g(x))	f'(g(x))g'(x)	Chain Rule
$y = f(x)^{g(x)}$	$\ln(y) = g(x)\ln(f(x))$	Logarithmic Diff
Eqn in x, y		Implicit Diff

NOTE: We don't actually need the general exponential and the general log, since:

$$a^x = e^{\ln(a) \cdot x}$$
 $\log_a(x) = \frac{1}{\ln(a)} \ln(x)$