Calculus I Review Questions

NOTE: You should also look over your old

exams, old review sheets, old quizzes and
homework.
1. Compare and contrast the three “Value Theo-

rems” of the course. When you would typically
use each.

List the three things we need to check to see if a
function f is continuous at x = a.

Derive the formula for the derivative of y =
sec™1(x).

Find the point on the parabola z +y? = 0 that is
closest to the point (0, —3).

Write the equation of the line tangent to z =
sin(2y) at « = 1.

For what values of A, B, C will y = Az?+ Bz +C
satisfy the differential equation:

§y”—2y’—|—y:3x2—|—2x+1

Compute the derivative of y with respect to x:
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(e) y = sin(2cos(3x))
(f) y = (cos(x))*
(g) y = (tan~!(z))~"
(h) y = sin"!(cos~(z))
(i) y = logyo(a® — )
() y=a2""*?
(k) y = e<s(®) 4 sin(5%)
() y = cot(32% + 5)
(m) y = /sin(y/xz)
m) v+ yy=1
(o) xtan(y )—y—l
(p) y= \/T where t = In(z?).
(a) y=a3"1/"

Let f(z) = 22°"L. Without explicitly computing
the inverse, what is the equation of the tangent
line to f~1(x) at * = 47 HINT: The point (1,4)
goes through the graph of f.

9.

10.

11.

12.

13.

14.

15.

16.

Find the local maximums and minimums: f(z) =
23 — 3z + 1 Show your answer is correct by us-
ing both the first derivative test and the second
derivative test.

Compute the limit, if it exists. You may use any
method (except a numerical table).
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Determine all vertical/horizontal asymptotes and
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critical points of f(z) =

Find values of m and b so that (1) f is continuous,
and (2) f is differentiable.

f(x):{:cz %f <2

mr+b if z>2

Find the local and global extreme values of
f(z) = on the interval [—2,0].

Suppose f is differentiable so that:
f)=1,f@2)=2, f(1)=1f(2)=
If g(x) = f(a® + f(2®

Let 2%y + a?xy + \y? =0

x
x2+zx+1

)), evaluate g'(1).

(a) Let a and A be constants, and let y be a
function of . Calculate %:

(b) Let = and y be constants, and let a be a
function of A. Calculate %\:

Show that z*+4x+c¢ = 0 has at most one solution
in the interval [—1,1].



17. True or False, and give a short explanation.

(a) If f has an absolute minimum at ¢, then

7(e) =0,

(b) If f is differentiable, then
d _ [
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-4 (10%) = 210771

If f/(z) exists and is nonzero for all z, then
f() # £(0).

(e) If y = ax + b, then g—z =z

(f) If 22 + 1 < f(z) < 22 + 2 for all 2, then
limg_,q f(x) = 3.

(g) If f'(r) exists, then

lim f(z) = f(r)

(h) If f and g are differentiable, then:

2 (g@) = £ @)g' )

(i) If f(x) = 22, then the equation of the tan-
gent line at x =3 is: y — 9 = 2z(x — 3)

.. cos(f) — % T
j) lim ———= = —sin (7)
(k) There is no solution to e* =0
(1) sin™! (sin (%)) = ¢
) 5l°8s5(22) = 22 for x > 0.
n) %ln(|x|) =1 for all z # 0.
) 4£10" = 210!

) If z > 0, then (In(z))® = 61In(z)

) The most general antiderivative of x72 is
=+ 0.
18. Find the domain of In(x — x2):

19. Find the value of ¢ guaranteed by the Mean Value

Theorem, if f(z) = ;%5 on the interval [1,4].

20. Given that the graph of f passes through the
point (1,6) and the slope of the tangent line at
(z, f(x)) is 2z + 1, find f(2).

21. A fly is crawling from left to right along the curve
y = 8 — 22, and a spider is sitting at (4,0). At
what point along the curve does the spider first
see the fly?
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Compute the limit, without using L’Hospital’s
vr+2-3

=7
For what value(s) of ¢ does f(x) = cz* — 222 +1

have both a local maximum and a local mini-
mum?

If f(z) = +/1— 2z, determine f'(z) by using the
definition of the derivative.

Rule. lim

z—T

A point of inflection for a function f is the x value
for which f”(x) changes sign (either from positive
to negative or vice versa).

Find constants a and b so that (1,6) is an inflec-
tion point for y = 23 4+ ax? + bx + 1.
Hint: The IVT might come in handy

Suppose that F(z) = f(g(x)) and ¢(3) = 6,
¢'(3) =4, £(3) =2 and f'(6) = 7. Find F'(3).

Find the dimensions of the rectangle of largest
area that has its base on the x—axis and the other
two vertices on the parabola y = 8 — 2.

Let G(z) = h(y/x).
tiable? Find G'(z).

Then where is G differen-

If position is given by: f(t) = t* — 23 + 2, find
the times when the acceleration is zero. Then
compute the velocity at these times.

If y = /5t — 1, compute y'".

Find a second degree polynomial so that P(2) =
5, P'(2) =3, and P"(2) = 2.

Find a function f(x) so that f'(x) =4 —3(1 +
z?)~1 and f(1) =0

If f(z) = (2 - 32)~'/2, find £(0), '(0), f"(0).

Car A is traveling west at 50 mi/h, and car B
is traveling north at 60 mi/h. Both are headed
for the intersection between the two roads. At
what rate are the cars approaching each other
when car A is 0.3 mi and car B is 0.4 mi from the
intersection?

Compute Ay and dy for the value of x and Ax:
flx)=6—22 2=-2, Az =04.

Find the linearization of f(x) = /1 —x at x = 0.

Find f(z), if f"(z) = t ++/t, and f(1) = 1,
() =2,
Find f/(z) directly from the definition of the

derivative (using limits and without L’'Hospital’s
rule):
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52.

93.

(a) f(z) =35z

(b) f(z) =22

(c) fz)=a"1!
If £(0) = 0, and f/(0) = 2, find the derivative of
F(f(f(f(z)))) at z = 0.

Differentiate:
N2

Is f differentiable at = 07 Explain.
f(z) = |In(x)|. Find f'(x).
f(z) = 297 Find f(z).

ifz>0
ifxz<0

Find a formula for dy/dx: 22 + xy + % = 0.

Show that 5 is a critical number of g(z) = 24 (z—
5)3, but that g does not have a local extremum
there.

Find the general antiderivative:
(a) f(x) =4 — 22+ 3e”

() flz)=2+2+1

(©) f@) = L

Find the slope of the tangent line to the following
at the point (3,4): 22 + VYT + y? =31

Find the critical values: f(z) = |22 — x|

Does there exist a function f so that f(0) = —1,
f(2) =4, and f'(z) < 2 for all 2?

Find a function f so that f’(z) = 2 and x+y = 0
is tangent to the graph of f.

Find dy if y = v/1 — x and evaluate dy if x = 0
and dx = 0.02. Compare your answer to Ay

Fill in the question marks: If f” is positive on an
interval, then f’ is 7 and f is ?.

If f(z) =z — cos(x), z is in [0, 27], then find the
value(s) of x for which

(a) f(x) is greatest and least.

(b) f(x) is increasing most rapidly.

(¢) The slopes of the lines tangent to the graph

of f are increasing most rapidly.

Show there is ezactly one solution to: In(x) =
3— .

o4.

95.

56.
o7.

Approximate the change in volume of a cone, if we
assume the height to be constant and r changes
from 2 to 2.1. (V = imr?h)

Sketch the graph of a function that satisfies all of
the given conditions:

F1) =5 J@=2  f)=7@)=0
Gim f(r) =0, lm fl@)=3  f(2)=1

2 3 _ dt ds
If st +¢° =1, find 5 and 7.

Find the specific antiderivative:
(a) f(2)=3va— =, f(1)=2
(b) f"(z) = a® +3cos(z), [f(0)=2f'(0)=3
(¢) f"(z) =3e*+5sin(x), f(0)=1,f(0)=2
)



