Quick Sheet: Horizontal Asymptotes

1. In this worksheet, we examine how to compute

$$\lim_{x \to \pm \infty} f(x)$$

If such a limit exists (call it L), then the line y = L is said to be a horizontal asymptote of f.

- 2. Unlike vertical asymptotes, it is possible for f to cross a horizontal asymptote.
- 3. A main template: Let r > 0. Then

$$\lim_{x \to \infty} \frac{1}{x^r} = 0 \tag{1}$$

- We have to be a little more careful for negative values of x. That is, as long as x^r is defined, then we get the same statement as above for $x \to -\infty$.
- The following is a useful fact for algebraic manipulation:

If x is negative, then $x = -\sqrt{x^2}$

- 4. Computation of limits at infinity:
 - When given a quotient, divide numerator and denominator to take advantage of Equation 1.
 - A difference of functions: "Rationalize" to make it a fraction, then use the previous idea.
 - Templates:
 - $y=\tan^{-1}(x)$ has two horizontal asymptotes, $y=\frac{\pi}{2}$ and $y=\frac{-\pi}{2}$.
 - $y = e^x$ has y = 0 as a horizontal asymptote (for $x \to -\infty$).
- 5. Some general rules to remember:
 - If each item goes to infinity, so does its sum. The same CANNOT be said about a difference! Use the idea given previously when taking the limit of a difference.
 - If each item goes to infinity, so does the product. The same CANNOT be said about a quotient.
- 6. A general rule about the infinite limit of a rational function, p(x)/q(x).
 - If the degree of p > degree of q, the limit is infinite.
 - If the degrees are the same, the limit is the ratio of the leading terms.
 - If the degree of p < degree of q, the limit is zero.