
Calculus I Review Solutions

1. Compare and contrast the three “Value Theorems” of the
course. When you would typically use each.

The three value theorems are the Intermediate, Mean and
Extreme value theorems. The intermediate and extreme
value theorems only require the function to be continuous
on a closed interval. The mean value theorem additionally
requires f to be differentiable on the open interval.

(a) We use the Mean Value Theorem for problems relat-
ing the derivative of an interior point to the values
of f at the endpoints. For example, if f has two
roots at x = a, x = b, then we know f must have a
critical point between a and b. A common use is to
substitute f ′(c)(b− a) in place of f(b)− f(a).

(b) The Intermediate Value Theorem says that for every
y−value w between f(a) and f(b), there is an x in
[a, b] so that f(x) = w. We can use this to prove the
existence of solutions to f(x) = 0, if f(a) and f(b)
are different in sign.

(c) The Extreme Value Theorem tells us when we can
guarantee the existence of maximums and mini-
mums, and tells us where they occur (at endpoints
or a critical point).

2. List the three things we need to check to see if a function
f is continuous at x = a.

(1) f(a) exists, (2) lim
x→a

f(x) exists, and (3) Parts (1) and

(2) have the same value.

3. Find the point on the parabola x + y2 = 0 that is closest
to the point (0,−3).

In general, the distance between a point (a, b) and (x, y)
is

d =
√

(x− a)2 + (y − b)2

but minimizing d is equivalent to minimizing

D = (x− a)2 + (y − b)2

which is MUCH easier to differentiate. In this case,

D = (x− 0)2 + (y − (−3))2 = x2 + (y + 3)2

The equation of the parabola is used to get D in terms of
one variable. Since x + y2 = 0, x = −y2, so

D = (−y2)2 + (y + 3)2 = y4 + (y + 3)2 = y4 + y2 + 6y + 9

Now we set the derivative equal to zero and solve,

4y3 + 2y + 6 = 0

(NOTE: On the exam, I wouldn’t give you a cubic equa-
tion to solve, in general, these are difficult). HINT: y = −1
is one solution.

With this, we can do long division to factor out (y + 1):

4y3 + 2y + 6 = 2(y + 1)(2y2 − 2y + 3)

From which we get that y = −1 is the only critical point
(if you use the quadratic formula on 2y2 − 2y + 3, you’ll
get no real solutions).

Now, x = −(−1)2 = −1. Is it a minimum? Yes, which
you can get from looking at sign changes of the derivative.

4. Write the equation of the line tangent to x = sin(2y) at
x = 1.

We need a point and a slope. If x = 1, then

1 = sin(2y)

so that 2y = π
2
, since sin(π/2) = 1. Now, y = π

4
. OK, so

now we need a slope:

1 = cos(2y) · 2
dy

dx

and the slope at y = π
4

is

1 = cos(π/2) · 2
dy

dx
⇒ 1 = 0

This means that there is no slope- the tangent line is ver-
tical. Therefore, the equation of the tangent line is x = 1.

5. The general solution to (y − k)′ = c(y − k) is given by:

y − k = Aect y = Aect + k

where A could be solved for if we were given a value for
y(0).

6. Compute the derivative of y with respect to x:

(a) y = 3√2x + 1 5√3x− 2

Use the product rule:

y′ =
1

3
(2x+1)−2/3·2· 5√3x− 2+ 3√2x + 1·

1

5
(3x−2)−4/5·3

(b) y = 1
1+u2 , where u = 1

1+x2

In this case, dy
dx

= dy
du
· du

dx
, so

dy

du
=

−2u

(1 + u2)2
,

du

dx
=

−2x

(1 + x2)2

so
dy

dx
=

4ux

(1 + u2)2(1 + x2)2

with u = 1
1+x2 , which you can either state or ex-

plicitly substitute.

(c) 3
√

y + 3√x = 4xy

Implicit differentiation:

1

3
y−2/3 dy

dx
+

1

3
x−2/3 = 4y + 4x

dy

dx

Bring all the dy
dx

terms together:(
1

3
y−2/3 − 4x

)
dy

dx
= 4y −

1

3
x−2/3 ⇒

dy

dx
=

4y − 1
3
x−2/3

1
3
y−2/3 − 4x

(d)
√

x + y = 3√x− y

Another implicit differentation:

1

2
(x + y)−1/2(1 + y′) =

1

3
(x− y)−2/3(1− y′)

Multiply out so that we can isolate y′

1

2
(x + y)−1/2 + y′ ·

1

2
(x + y)−1/2 =

1

3
(x− y)−2/3 − y′ ·

1

3
(x− y)−2/3

Now isolate y′

y′
(

1

2
(x + y)−1/2 +

1

3
(x− y)−2/3

)
=

1

3
(x− y)−2/3 −

1

2
(x + y)−1/2

Final answer:

y′ =
1
3
(x− y)−2/3 − 1

2
(x + y)−1/2

1
2
(x + y)−1/2 + 1

3
(x− y)−2/3
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(e) y = sin(2 cos(3x))

Chain Rule:

y′ = cos(2 cos(3x))·(−2 sin(3x))·3 = −6 cos(2 cos(3x)) sin(3x)

(f) y = (cos(x))2x

Logarithmic Differentiation: Write (cos(x))2x =

e2x ln(cos(x)), and:

y′ = e2x ln(cos(x))(cos(x))2x (2 ln(cos(x)) + 2x tan(x))

(g) y = (tan−1(x))−1

Chain Rule:

y′ = −(tan−1(x))−2 ·
1

x2 + 1

(h) y = sin−1(cos−1(x))

Chain Rule:

y′ =
1√

1− (cos−1(x))2
·

−1
√

1− x2

(i) y = log10(x2 − x) y′ = 1
(x2−x) ln(10)

· (2x− 1)

(j) y = xx2+2 First rewrite: e(x
2+2) ln(x), then differ-

entiate:

y′ = e(x
2+2) ln(x)

(
2x ln(x) + x +

2

x

)
y′ = xx2+2

(
2x ln(x) + x +

2

x

)
(k) y = ecos(x) + sin(5x)

Chain rule:

y′ = ecos(x)(− sin(x)) + cos(5x) · 5x ln(5)

(l) y = cot(3x2 + 5)

Chain rule:

y′ = − csc2(3x2 + 5) · (6x) = −6x csc2(3x2 + 5)

(m) y =
√

sin(
√

x)

Chain rule:

y′ =
1

2

(
sin(

√
x)

)−1/2
· cos(

√
x) ·

1

2
x−1/2

(n)
√

x + 3
√

y = 1

Implicit Differentiation:

1

2
x−1/2 +

1

3
y−2/3 dy

dx
= 0

so
dy

dx
= −

3y2/3

2x1/2

(o) x tan(y) = y − 1

Product rule/Implicit Diff

tan(y)+x sec2(y)y′ = y′ ⇒ tan(y) = y′(1−x sec2(y))

Solve for y′:

y′ =
tan(y)

1− x sec2(y)

(p) y = −2
4√

t3
, where t = ln(x2).

First, note that y = −2t−3/4 and t = 2 ln(x). Now,

dy

dx
=

dy

dt
·

dt

dx

where
dy

dt
=
−3

4
t−7/4,

dt

dx
=

2

x
so put it all together (and substitute back for x):

dy

dx
=
−3

4
(2 ln(x))−7/4 ·

2

x
=

−6

4x(2 ln(x))7/4

(q) y = x3−1/x

y′ = 3−1/x+x3−1/x ln(3)·
1

x2
= 3−1/x

(
1 +

ln(3)

x

)
7. Find the local maximums and minimums: f(x) = x3 −

3x + 1 Show your answer is correct by using both the first
derivative test and the second derivative test.

To find local maxs and mins, first differentiate to find crit-
ical points:

f ′(x) = 3x2 − 3 = 0 ⇒ x = ±1

For the first derivative test, set up a sign chart. You should
see that 3x2−3 = 3(x+1)(x−1) is positive for x < 1 and
x > 1, and f ′(x) is negative if −1 < x < 1. Therefore,
at x = −1, the derivative changes sign from positive to
negative, so x = −1 is the location of a local maximum.
At x = 1, the derivative changes sign from negative to
positive, so we have a local minimum.

For the second derivative test, we compute the second
derivative at the critical points:

f ′′(x) = 6x

so at x = −1, f is concave down, so we have a local max,
and at x = 1, f is concave up, so we have a local min.

8. Compute the limit, if it exists. You may use any method
(except a numerical table).

(a) lim
x→0

x− sin(x)

x3

We have a form of 0
0
, so use L’Hospital’s rule:

lim
x→0

x− sin(x)

x3
= lim

x→0

1− cos(x)

3x2

We still have 0
0
, so do it again and again!

lim
x→0

1− cos(x)

3x2
= lim

x→0

sin(x)

6x
= lim

x→0

cos(x)

6
=

1

6

(b) lim
x→0

1− e−2x

sec(x)

Note that sec(0) = 1
cos(0)

= 1, so this function is

continuous at x = 0 (we can substitute x = 0 in
directly), and we get that the limit is 0.

(c) lim
x→4+

x− 4

|x− 4|
Rewrite the expression to get rid of the absolute
value:

x− 4

|x− 4|
=

{
x−4
x−4

if x > 4
x−4

−(x−4)
, if x < 4

=

{
1 if x > 4
−1 if x < 4

Therefore,

lim
x→4+

x− 4

|x− 4|
= 1

(Note that the overall limit does not exist, however).

(d) lim
x→−∞

√
2x2 − 1

x + 8x2

For this problem, we should recall that if x < 0,
then x = −

√
x2, although in this particular case,

the negative signs will cancel:

lim
x→−∞

√
2x2 − 1

x + 8x2
·
−1√
x2

−1√
x2

= lim
x→−∞

√
2− 1

x2

1
x

+ 8
=

√
2

8
=

1

2
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(e) lim
x→∞

√
x2 + x + 1−

√
x2 − x

Multiply by the conjugate (or rationalize):

lim
x→∞

√
x2 + x + 1−

√
x2 − x·

√
x2 + x + 1 +

√
x2 − x

√
x2 + x + 1 +

√
x2 − x

=

lim
x→∞

2x + 1
√

x2 + x + 1 +
√

x2 − x
·

Now divide numerator and denominator:

lim
x→∞

2x + 1
√

x2 + x + 1 +
√

x2 − x
·

1
x
1√
x2

=

lim
x→∞

2 + 1
x√

1 + 1
x

+ 1
x2 +

√
1− 1

x

= 1

(f) lim
h→0

(1 + h)−2 − 1

h
For practice, we’ll try it without using L’Hospital’s
rule:

lim
h→0

(1 + h)−2 − 1

h
= lim

h→0

1
(1+h)2

− 1

h
=

lim
h→0

1− (1 + h)2

h(1 + h)2
= lim

h→0

−2h− h2

h(1 + h)2
= −2

With L’Hospital:

lim
h→0

(1 + h)−2 − 1

h
= lim

h→0

−2(1 + h)−3

1
= −2

EXTRA: This limit was the derivative of some func-
tion at some value of x. Name the function and the
x value1.

(g) lim
x→∞

x3e−x2

First rewrite the function so that it’s in an accept-
able form for L’Hospital’s rule:

lim
x→∞

x3

ex2 = lim
x→∞

3x2

2xex2

Note that 3x2

2xex2 = 3x

2ex2 , and again use L’Hospital’s

rule:

lim
x→∞

3x

2ex2 = lim
x→∞

3

4xex2 = 0

(h) lim
x→1

x1000 − 1

x− 1
Using L’Hospital’s rule:

lim
x→1

x1000 − 1

x− 1
= lim

x→1

1000x999

1
= 1000

(i) lim
x→0

x

tan−1(4x)

Recall that tan−1(0) = 0, since tan(0) = 0, so this
is in a form for L’Hospital’s rule:

lim
x→0

x

tan−1(4x)
= lim

x→0

1
1

1+(4x)2
· 4

= lim
x→0

1 + 16x2

4
=

1

4

(j) lim
x→1

x
1

1−x

In this case, recall that x
1

1−x = e
1

1−x
·ln(x)

, so:

lim
x→1

x
1

1−x = lim
x→1

e
1

1−x
·ln(x)

= e
lim
x→1

ln(x)

1− x

1The function is f(x) = x−2 at x = 1

so we focus on the exponent:

lim
x→1

ln(x)

1− x
= lim

x→1

1
x

−1
= −1

so the overall limit:

lim
x→1

x
1

1−x = e−1

9. Determine all vertical/horizontal asymptotes and critical

points of f(x) = 2x2

x2−x−2

The vertical asymptotes: x2−x−2 = 0 ⇒ (x−2)(x+1) =
0, so x = −1, x = 2 are the equations of the vertical
asymptotes (note that the numerator is not zero at these
values).

The horizontal asymptotes:

lim
x→±∞

2x2

x2 − x− 2
= lim

x→±∞

2

1− 1
x
− 2

x2

= 2

so y = 2 is the vertical asymptote (for both +∞ and −∞).

10. Find values of m and b so that (1) f is continuous, and
(2) f is differentiable.

f(x) =

{
x2 if x ≤ 2
mx + b if x > 2

First we see that if x < 2, f(x) = x2 which is continuous,
and if x < 2, f(x) = mx + b, which is also continuous for
any value of m and b. The only problem point is x = 2,
so we check the three conditions from the definition of
continuity:

• f(2) = 2m + b, so f(2) exists.

• To compute the limit, we have to do them sepa-
rately:

lim
x→2+

f(x) = lim
x→2+

x2 = 4

lim
x→2−

f(x) = lim
x→2−

mx + b = 2m + b

For the limit to exist, we must have 4 = 2m + b.
This will also automatically make item 3 true.

There are an infinite number of possible solutions.
Given any m, b = 4− 2m.

For the second part, we know that f must be continuous to
be differentiable, so that leaves us with b = 4− 2m. Also,
the derivatives need to match up at x = 2. On the right
side of x = 2, f ′(x) = 2x and on the left side of x = 2,
f ′(x) = m. Therefore, 4 = m and b = 4− 2 · 4 = −4.

To be differentiable at x = 2, we require m = 4 and b =
−4.

11. Find the local and global extreme values of f(x) =
x

x2+x+1
on the interval [−2, 0].

We see that x2 +x+1 = 0 has no solution, so f(x) is con-
tinuous on [−2, 0]. Therefore, the extreme value theorem
is valid. Next, find the critical points:

f ′(x) =
(x2 + x + 1)− x(2x + 1)

(x2 + x + 1)2
=

−x2 + 1

(x2 + x + 1)2

so the critical points are x = ±1 of which we are only
concerned with x = −1. Now build a chart of values:

x 0 −1 −2
f(x) 0 −1 −2/3

The minimum occurs at x = −1 and the maximum occurs
at x = 0. The minimum value is −1 and the maximum
value is 0.
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For the local min/max, use a sign chart for f ′(x) in the
interval [−2, 0] (or you can use the second derivative test).
We see that the denominator of f ′(x) is always positive,
and the numerator is 1 − x2, which changes from nega-
tive to positive at x = −1, so that f is decreasing then
increasing and there is a local minimum at x = −1.

12. Suppose f is differentiable so that:

f(1) = 1, f(2) = 2, f ′(1) = 1 f ′(2) = 2

If g(x) = f(x3 + f(x2)), evaluate g′(1).

Use the chain rule to get that:

g′(x) = f ′
(
x3 + f(x2)

)
·
(
3x2 + f ′(x2) · 2x

)
Be careful with the parentheses!:

g′(1) = f ′(1+f(1))·(3+2f ′(1)) = f ′(1+1)(3+2) = 5f ′(2) = 5·2 = 10

13. Let x2y + a2xy + λy2 = 0

(a) Let a and λ be constants, and let y be a function of

x. Calculate dy
dx

:

2xy + x2 dy

dx
+ a2y + a2x

dy

dx
+ 2λy

dy

dx
= 0

(x2+a2x+2λy)
dy

dx
= −(2xy+a2y) ⇒

dy

dx
=

−(2xy + a2y)

x2 + a2x + 2λy

(b) Let x and y be constants, and let a be a function of
λ. Calculate da

dλ
:

2axy
da

dλ
+ y2 = 0 ⇒

da

dλ
=
−y2

2axy

EXTRA2: What is dλ
da

?

14. Show that x4 +4x + c = 0 has at most one solution in the
interval [−1, 1].

We don’t need the Intermediate Value Theorem here, only
the Mean Value Theorem. The derivative is 4x3+4, so the
only critical point is x = −1, which is also an endpoint.
This implies: (1) If x4+4x+c = 0 had two solutions (which
is possible), then one of them must be outside the interval,
since the two solutions must be on either side of x = −1.
Therefore, there could be one solution inside the interval.
(2) There cannot be any other solution to x4 + 4x + c = 0
inside the interval, because then there would have to be
another critical point in [−1, 1]. Therefore, we conclude
that there is at most one solution inside the interval (there
might be no solutions).

15. True or False, and give a short explanation.

(a) If f has an absolute minimum at c, then f ′(c) = 0.

False. For example, f(x) = |x| has an absolute min-
imum at x = 0, but f ′(x) is not defined at x = 0.

(b) If f(x) is decreasing and g(x) is decreasing, then
f(x)g(x) is decreasing.

False. The derivative is found via the product rule,
f ′g + fg′. We know that f ′(x) < 0 and g′(x) < 0,
but we do not know the signs of f(x) and g(x), so
we cannot say that the derivative of fg is negative.

(c) If f is differentiable, then

d

dx

√
f(x) =

f ′(x)

2
√

f(x)

True, since

d

dx

√
f(x) =

1

2
(f(x))−1/2 · f ′(x) =

f ′(x)

2
√

f(x)

2The answer is dλ
da

= 2axy
−y2

(d) d
dx

(10x) = x10x−1

False. We cannot use the Power Rule, since there is
a variable in the exponent. The correct derivative is
found using the rule for ax:

d

dx
(10x) = 10x ln(10)

(e) If f ′(x) exists and is nonzero for all x, then f(1) 6=
f(0).

True. If f ′(x) exists for all x, then f is differ-
entiable everywhere (and is also continuous every-
where). Thus, the Mean Value Theorem applies. If
f(1) = f(0), that would imply the existence of a c
in the interval (0, 1) so that

f ′(c) =
f(1)− f(0)

1− 0
= 0

but we’re told that f ′(x) 6= 0.

(f) If y = ax + b, then dy
da

= x

True. If we’re computing dy
da

, then we’re treating x
and b as constants. Differentiating, we get

dy

da
= x + 0 = x

(g) If 2x + 1 ≤ f(x) ≤ x2 + 2 for all x, then
limx→1 f(x) = 3.

True. This is the Squeeze Theorem. If f(x) is
trapped between 2x + 1 and x2 + 2 for all x, and
since the limit as x → 1 of 2x + 1 is 3, and the limit
as x → 1 of x2 + 2 = 3, then that forces the limit as
x → 1 of f(x) to also be 3.

(h) If f ′(r) exists, then

lim
x→r

f(x) = f(r)

True. The statement that f ′(r) exists says that
f is differentiable at r. The statement that
limx→r f(x) = f(r) is asking if f is continuous at
r. We know that all differentiable functions are con-
tinuous, so the statement is True.

(i) If f and g are differentiable, then:

d

dx
(f(g(x)) = f ′(x)g′(x)

False. The chain rule states that d
dx

(f(g(x)) =
f ′(g(x))g′(x)

(j) If f(x) = x2, then the equation of the tangent line
at x = 3 is: y − 9 = 2x(x− 3)

False. 2x is a formula for the slope, not the slope
itself. The equation of the tangent line is: y − 9 =
6(x− 3).

(k) lim
θ→π

3

cos(θ)− 1
2

θ − π
3

= − sin

(
π

3

)
True by l’Hospital’s rule. You could have also said
that the expression is in the form:

lim
x→a

f(x)− f(a)

x− a

with f(x) = cos(x) and a = π
3
. This is another way

of defining the derivative of cos(x) at x = π
3
.

(l) There is no solution to ex = 0

True. If there were a solution, it would be x = ln(0),
but ln(0) is not defined.
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(m) sin−1
(
sin

(
2π
3

))
= 2π

3

False, with the usual restrictions on the sine func-
tion. That is, if −π

2
≤ θ ≤ π

2
, then it is true that

sin−1(sin(θ)) = θ. In this case,

sin−1
(

sin

(
2π

3

))
=

π

3

(n) 5log5(2x) = 2x, for x > 0.

True, since 5x and log5(x) are inverses of each other.
We needed x > 0 so that log5(2x) is defined.

(o) d
dx

ln(|x|) = 1
x
, for all x 6= 0.

True:

ln |x| =
{

ln(x), if x > 0
ln(−x), if x < 0

so

d

dx
ln |x| =

{
1
x

, if x > 0
1
−x

· (−1) = 1
x

, if x < 0

(p) d
dx

10x = x10x−1

Oops- a duplication. See part (c)

(q) If x > 0, then (ln(x))6 = 6 ln(x)

False. The rule says: log(ab) = b log(a), but here
the 6 is outside the logarithm.

16. Find the domain of ln(x− x2):

Use a sign chart to determine where x−x2 = x(1−x) > 0:

x − + +
1− x + + −

x < 0 0 < x < 1 x > 1

so overall, x− x2 > 0 if 0 < x < 1.

17. Find the value of c guaranteed by the Mean Value Theo-
rem, if f(x) = x

x+2
on the interval [1, 4].

To set things up, we see that f is continuous on [1, 4]
and differentiable on (1, 4), since the only “bad point” is
x = −2. We should get that f ′(x) = 2

(x+2)2
, f(1) = 1

3

and f(4) = 2
3
. Therefore, the Mean Value Theorem says

that c should satisfy:

2

(c + 2)2
=

2
3
− 1

3

4− 1
=

1

9

or
(c + 2)2 = 18 ⇒ c = −2±

√
18

of which only −2 +
√

18 ≈ 2.243 is inside our interval.

18. Given that the graph of f passes through the point (1, 6)
and the slope of the tangent line at (x, f(x)) is 2x+1, find
f(2).

Since f ′(x) = 2x + 1, f(x) = x2 + x + C is the general
antiderivative. Given that (1, 6) goes through f , 12 + 1 +
C = 6 ⇒ C = 4. Therefore, f(x) = x2 + x + 4. Now,
f(2) = 4 + 2 + 4 = 10.

19. To simplify, we make θ = tan−1(x) so that tan(θ) = x
1
.

This means we are looking at a triangle whose length of
the side opposite is x, and adjacent is 1. The hypotenuse
is then

√
1 + x2. Now take the cos(θ) to get:

cos(tan−1(x)) =
1

√
1 + x2

20. A fly is crawling from left to right along the curve y =
8 − x2, and a spider is sitting at (4, 0). At what point
along the curve does the spider first see the fly?

Another way to say this: What are the tangent lines
through y = 8− x2 that also go through (4, 0)?

The unknown value here is the x−coordinate, so let x = a.
Then the slope is −2a, and the corresponding point on the
curve is (a, 8 − a2). The general form of the equation of
the tangent line is then given by:

y − 8 + a2 = −2a(x− a)

where x, y are points on the tangent line. We want the
tangent line to go through (4, 0), so we put this point in
and solve for a:

−8+a2 = −2a(4−a) = −8a+2a2 ⇒ 0 = a2−8a+8

⇒ a =
8±

√
32

2

so we take the leftmost value, a = 8−
√

32
2

.

21. Compute the limit, without using L’Hospital’s Rule.

lim
x→7

√
x + 2− 3

x− 7
Rationalize to get:

lim
x→7

√
x + 2− 3

x− 7
·
√

x + 2 + 3
√

x + 2 + 3
= lim

x→7

x + 2− 9

(x− 7)(
√

x + 2 + 3)

= lim
x→7

1

(
√

x + 2 + 3)
=

1

6

which is the derivative of
√

x + 2 at x = 7.

22. For what value(s) of c does f(x) = cx4−2x2+1 have both
a local maximum and a local minimum?

First, f ′(x) = 4cx3 − 4x = 4x(cx2 − 1), and f ′′(x) =
12cx2 − 4. The candidates for the location of the local
max’s and min’s are where f ′(x) = 0, which are x = 0 and

x = ±
√

1/c (c > 0). We can use the second derivative
test to check these out:

At x = 0, f ′′(0) = −4, so x = 0 is always a local max. At

x = ±
√

1/c, f ′′(±
√

1/c) = 12−4 = 8. So, if c > 0, there

are local mins at x = ±
√

1/c.

23. If f(x) =
√

1− 2x, determine f ′(x) by using the definition
of the derivative.

f ′(x) = lim
h→0

√
1− 2(x + h)−

√
1− 2x

h
=

lim
h→0

√
1− 2(x + h)−

√
1− 2x

h
·

√
1− 2(x + h) +

√
1− 2x√

1− 2(x + h) +
√

1− 2x
=

lim
h→0

1− 2x− 2h− 1 + 2x

h(
√

1− 2(x + h) +
√

1− 2x)
=

lim
h→0

−2√
1− 2(x + h) +

√
1− 2x

=
−1

√
1− 2x

24. A point of inflection for a function f is the x value for
which f ′′(x) changes sign (either from positive to negative
or vice versa).

If f ′′ is continuous, and f ′′(a) < 0 and
f ′′(b) > 0, there is a c so that f ′′(c) = 0 is
an inflection point.

...which is the Intermediate Value Theorem.

Find constants a and b so that (1, 6) is an inflection point
for y = x3 + ax2 + bx + 1.

Differentiate twice to get:

y′′ = 6x + 2a
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At x = 1, we want an inflection point, so 6 + 2a should be
a point where y′′ changes sign: 6 + 2a = 0 ⇒ a = −3. We
see that if a < −3, then y′′ < 0, and if a > −3, y′′ > 0.

Putting this back into the function, we have:

y = x3 − 3x2 + bx + 1

and we want the curve to go through the point (1, 6):

6 = 1− 3 + b + 1

so b = 7.

25. Suppose that F (x) = f(g(x)) and g(3) = 6, g′(3) = 4,
f(3) = 2 and f ′(6) = 7. Find F ′(3).

By the Chain Rule:

F ′(3) = f ′(g(3))g′(3)

so F ′(3) = f ′(6) · 4 = 7 · 4 = 28

26. Find the dimensions of the rectangle of largest area that
has its base on the x−axis and the other two vertices on
the parabola y = 8− x2.

Try drawing a picture first: The parabola opens down,
goes through the y−intercept at 8, and has x−intercepts
of ±

√
8.

Now, let x be as usual, so that the full length of the base
of the rectangle is 2x. Then the height is y, or 8 − x2.
Therefore, the area of the rectangle is:

A = 2xy = 2x(8− x2) = 16x− 2x3

and 0 ≤ x ≤
√

8. We see that the area will be zero at the
endpoints, so we expect a maximum at the critical point
inside the interval:

dA

dx
= 16− 6x2

so the critical points are x = ± 4√
6
, of which only x = 4√

6
is in our interval. So the dimensions of the rectangle are:

2x =
8
√

6
, y = 5

1

3

27. Let G(x) = h(
√

x). Then where is G differentiable? Find
G′(x).

First compute G′(x) = h′(
√

x) 1
2
x−1/2. From this we see

that as long as h is differentiable and x > 0, then G will
be differentiable.

28. If position is given by: f(t) = t4 − 2t3 + 2, find the times
when the acceleration is zero. Then compute the velocity
at these times.

Take the second derivative, and set it equal to zero:

f ′(x) = 4t3 − 6t2, f ′′(t) = 12t2 − 12t = 0 ⇒ t = 0, t = 1

The velocity at t = 0 is 0 and the velocity at t = 1 is
4− 6 = −2.

29. If y =
√

5t− 1, compute y′′′.

Nothing tricky here- Just differentiate, and differentiate,
and differentiate!

y′ =
1

2
(5t− 1)−1/2 · 5 =

5

2
(5t− 1)−1/2

y′′ =
5

2
·
−1

2
(5t− 1)−3/2 · 5 =

−25

4
(5t− 1)−3/2

y′′′ =
375

8
(5t− 1)−5/2

30. If f(x) = (2− 3x)−1/2, find f(0), f ′(0), f ′′(0).

Differentiate:

f ′(x) =
−1

2
(2− 3x)−3/2(−3) =

3

2
(2− 3x)−3/2

f ′′(x) =
−9

4
(2− 3x)−5/2(−3) =

27

4
(2− 3x)−5/2

Now, (note that 23/2 = 2
√

2 and 25/2 = 4
√

2):

f(0) =
1
√

2
, f ′(0) =

3

2
·

1

23/2
=

3

4
√

2
, f ′′(0) =

27

16
√

2

31. Car A is traveling west at 50 mi/h, and car B is traveling
north at 60 mi/h. Both are headed for the intersection
between the two roads. At what rate are the cars ap-
proaching each other when car A is 0.3 mi and car B is
0.4 mi from the intersection?

Let A(t), B(t) be the positions of cars A and B at time
t. Let the distance between them be z(t), so that the
Pythagorean Theorem gives:

z2 = A2 + B2

Translating the question, we get that we want to find dz
dt

when A = 0.3, B = 0.4, (so z = 0.5), A′(t) = 50, B′(t) =
60. Then:

2z
dz

dt
= 2A

dA

dt
+ 2B

dB

dt
The two’s divide out and put in the numbers:

0.5 ·
dz

dt
= 0.3 · 50 + 0.4 · 60

and solve for dz
dt

, 78.

32. Find the linearization of f(x) =
√

1− x at x = 0.

To linearize, we find the equation of the tangent line.

f ′(x) =
1

2
(1− x)−1/2(−1)

so f ′(0) = − 1
2
, and the point is (0, 1).

y − 1 = −
1

2
x, or y = −

1

2
+ 1

33. Find f(t), if f ′′(t) = t +
√

t, and f(1) = 1, f ′(1) = 2.

f ′(t) =
1

2
t2 +

2

3
t3/2 + C

so f ′(1) = 2 means:

1

2
+

2

3
+ C = 2, so C =

5

6

Now, f ′(t) = 1
2
t2 + 2

3
t3/2 + 5

6
, and

f(t) =
1

2
·
1

3
t3+

2

3
·
2

5
t5/2+

5

6
t+C =

1

6
t3+

4

15
t5/2+

5

6
t+C

Now, f(1) = 1 means:

1

6
+

4

15
+

5

6
+C = 1 ⇒

5 + 8 + 25

30
+C = 1 ⇒ C = 1−

19

15
=
−4

15

34. Find f ′(x) directly from the definition of the derivative
(using limits and without L’Hospital’s rule):

First, recall that:

f ′(x) = lim
h→0

f(x + h)− f(x)

h

We’ll use this for these exercises:
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(a) f(x) =
√

3− 5x

lim
h→0

√
3− 5x− 5h−

√
3− 5x

h
·
√

3− 5x− 5h +
√

3− 5x
√

3− 5x− 5h +
√

3− 5x

lim
h→0

3− 5x− 5h− 3 + 5x

h
(√

3− 5x− 5h +
√

3− 5x
)

−5

2
√

3− 5x

(b) f(x) = x2

lim
h→0

(x + h)2 − x2

h
= lim

h→0

x2 + 2xh + h2 − x2

h
=

lim
h→0

h(2x + h)

h
= 2x

(c) f(x) = x−1

lim
h→0

1
x+h

− 1
x

h
= lim

h→0

x−(x+h)
x(x+h)

h
=

lim
h→0

−h

hx(x + h)
= lim

h→0

−1

x(x + h)
=
−1

x2

35. If f(0) = 0, and f ′(0) = 2, find the derivative of
f(f(f(f(x)))) at x = 0.

First, note that the derivative is (Chain Rule):

f ′(f(f(f(x)))) · f ′(f(f(x))) · f ′(f(x)) · f ′(x)

which simplifies (since f(0) = 0) to:

f ′(0) · f ′(0) · f ′(0) · f ′(0) = 24 = 16

36. Differentiate:

f(x) =

{ √
x if x ≥ 0

−
√

x if x < 0

Is f differentiable at x = 0? Explain.

Correction: −
√

x = −
√
−x

Is f differentiable at x = 0? Explain.

f will not be differentiable at x = 0. Note that, if x > 0,
then f ′(x) = 1

2
√

x
, so f ′(x) →∞ as x → 0+

If x < 0, f ′(x) = 1
2
√
−x

, which also goes to infinity as x

approaches 0 (from the left).

37. f(x) = | ln(x)|. Find f ′(x).

We can rewrite f (Recall that ln(x) < 0 if 0 < x < 1)

f(x) =

{
ln(x), if x ≥ 1
− ln(x), if 0 < x < 1

and differentiate piecewise:

f ′(x) =

{
1
x

, if x > 1

− 1
x

, if 0 < x < 1

Note that the pieces don’t match at x = 1; we remove that
point from the domain.

38. f(x) = xeg(
√

x). Find f ′(x).

f ′(x) = eg(
√

x) + xeg(
√

x) · g′(
√

x) ·
1

2
x−1/2

39. Find a formula for dy/dx: x2 + xy + y3 = 0.

2x+y+xy′+3y2y′ = 0 ⇒ (x+3y2)y′ = −(2x+y) ⇒ y′ =
−(2x + y)

x + 3y2

40. Show that 5 is a critical number of g(x) = 2 + (x − 5)3,
but that g does not have a local extremum there.

g′(x) = 3(x− 5)2, so g′(5) = 0.

By looking at the sign of g′(x) (First derivative test), we
see that g′(x) is always non-negative, so g does not have
a local min or max at x = 5.

41. Find the general antiderivative: (SORRY, THIS SHOULD
NOT HAVE BEEN INCLUDED HERE- IGNORE THIS
PROBLEM FOR NOW)

(a) f(x) = 4− x2 + 3ex F (x) = 4x− 1
3
x3 + 3ex + C

(b) f(x) = 3
x2 + 2

x
+ 1 F (x) = −3x−1 + 2 ln |x|+ x + C

(c) f(x) = 1+x√
x

First rewrite f(x) = x−1/2 + x1/2, and

F (x) = 2x1/2 +
2

3
x3/2 + C

42. Find the slope of the tangent line to the following at the
point (3,4): x2 +

√
yx + y2 = 31

2x +
1

2
y−1/2y′x +

√
y + 2yy′ = 0

At x = 3, y = 4:

6 +
3

4
y′ + 2 + 8y′ = 0 ⇒ y′ =

−32

35

y − 4 =
−32

35
(x− 3)

43. Find the critical values: f(x) = |x2 − x|
One way to approach this problem is to look at it piece-
wise. Use a table to find where f(x) = x(x− 1) is positive
or negative:

f(x) =

{
x2 − x if x ≤ 0, or x ≥ 1

−x2 + x if 0 < x < 1

Now compute the derivative:

f ′(x) =

{
2x− 1 if x < 0, or x > 1

−2x + 1 if 0 < x < 1

At x = 0, from the left, f ′(x) → 1 and from the right,
f ′(x) → −1, so f ′(x) does not exist at x = 0.

At x = 1, from the left, f ′(x) → −1, and from the right,
f ′(x) → 1, so f ′(x) does not exist at x = 1.

Finally, f ′(x) = 0 if 2x − 1 = 0 ⇒ x = 1/2, but 1/2 is
not in that domain. The other part is where −2x +1 = 0,
which again is 1/2, and this time it is in 0 < x < 1.

The critical points are: x = 1/2, 0, 1.

44. Does there exist a function f so that f(0) = −1, f(2) = 4,
and f ′(x) ≤ 2 for all x?

f ′(x) =
f(2)− f(0)

2− 0
=

5

2

Since 5
2

> 2, there can exist no function like that (that is
continuous).

45. Linearize f(x) =
√

1 + x at x = 0.

Point: x = 0, y = 1

Slope: f ′(0) = 1
2

Line: y − 1 = 1
2
(x− 0), or y = 1

2
x + 1

46. (THIS PROBLEM SHOULD HAVE BEEN DELETED-
SORRY!) Find dy if y =

√
1− x and evaluate dy if x = 0

and dx = 0.02. Compare your answer to ∆y

dy =
−1

2
√

1− x
dx, ⇒ dy =

1

2
√

1− 0
· 0.02 = 0.01

∆y =
√

1− 0.02−
√

1 = 0.01005...
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47. Fill in the question marks: If f ′′ is positive on an interval,
then f ′ is INCREASING and f is CONCAVE UP.

48. If f(x) = x− cos(x), x is in [0, 2π], then find the value(s)
of x for which

(a) f(x) is greatest and least.

Here we are looking for the maximum and minimum-
use a table with endpoints and critical points. To
find the critical points,

f ′(x) = 1 + sin(x) = 0 ⇒ sin(x) = −1 ⇒ x =
3π

2

is the only critical point in [0, 2π].

Now the table:

x 0 3π
2

2π

f(x) −1 3
π

2 ≈ 4.7 2π − 1 ≈ 5.2

so f is greatest at x = 2π, least at 0.

(b) f(x) is increasing most rapidly.

Another way to say this: Where’s the maximum of
f ′(x)? We’ve computed f ′(x) to be: 1 + sin(x), so
take its derivative: cos(x) = 0. So there are two
critical points at x = π

2
and x = 3π

2
. Checking

these and the endpoints:

x 0 π
2

3π
2

2π

f ′(x) 1 2 0 1

so f is increasing most rapidly at x = π
2
.

(c) The slopes of the lines tangent to the graph of f are
increasing most rapidly.

Another way to say this: Where is f ′(x) increasing
most rapidly? At the maximum of f ′′(x). The max-
imum of cos(x) in the interval [0, 2π] occurs at x = 0
and x = 2π.

49. Show there is exactly one root to: ln(x) = 3− x

First, to use the Intermediate Value Theorem, we’ll get a
function that we can set to zero: Let f(x) = ln(x)−3+x.
Then a root to ln(x) = 3− x is where f(x) = 0.

First, by plugging in numbers, we see that f(2) < 0 and
f(3) > 0. There is at least one solution in the interval
[2, 3] by the Intermediate Value Theorem.

Now, is there more than one solution? f ′(x) = 1
x

+ 1
which is always positive for positive x. This means that,
for x > 0, f(x) is always increasing. Therefore, if it crosses
the x−axis (and it does), then f can never cross again.

50. Sketch the graph of a function that satisfies all of the given
conditions:

f(1) = 5 f(4) = 2 f ′(1) = f ′(4) = 0
lim

x→2+
f(x) = ∞, lim

x→2−
f(x) = 3 f(2) = 4

(We’ll do this one in class)

51. If s2t + t3 = 1, find dt
ds

and ds
dt

.

First, treat t as the function, s as the variable:

2st + s2 dt

ds
+ 3t2

dt

ds
= 0 ⇒

dt

ds
=

−2st

s2 + 3t2

For s as the function, t as the variable:

ds

dt
=
−(s2 + 3t2)

2st

which you can either state directly or show.

52. Define the functions as piecwise defined functions:

|3x + 2|
3x + 2

=

{
3x+2
3x+2

if 3x + 2 > 0

− 3x+2
3x+2

if 3x + 2 < 0
=

{
1 if x > − 2

3
−1 if x < − 2

3

To do the next problem, we need to know where the func-
tion is positive and where it is negative. Use a sign chart:

x− 2 − − − +
x + 1 − − + +
x + 2 − + + +

x < −2 −2 < x < −1 −1 < x < 2 x > 2

The function is positive in the second and 4th intervals,
and negative in the first and third. Now,∣∣∣ x− 2

(x + 1)(x + 2)

∣∣∣ =

{
x−2

(x+1)(x+2)
if − 2 < x < −1 or x ≥ 2

− x−2
(x+1)(x+2)

if x < −2 or − 1 < x < 2

53. Find all values of c and d so that f is continuous at all
real numbers.

First, we should see that the only two “problem” points are
at x = 0 and at x = 1, which are where the functions come
together. Other than those points, f is continuous. At the
problem points, we need to check the three conditions for
continuity.

At x = 0, (i) f(0) = c · 0 + d, so f(0) = d which exists for
all c and d. (ii) Check that the limit exists:

lim
x→0−

f(x) = lim
x→0−

2x2 − 1 = −1

lim
x→0+

f(x) = lim
x→0+

cx + d = d

Therefore, for the limit to exist at x = 0, we must have
d = −1. So far, this function is now continuous at x = 0
for any value of c.

At x = 1, (i) f(1) = c · 1 + d = c · 1 − 1 = c − 1, which
exists for all values of c. (ii) Check that the limit exists at
x = 1,

lim
x→1−

f(x) = lim
x→1−

cx− 1 = c− 1

lim
x→1+

f(x) = lim
x→1+

√
x + 3 = 2

Therefore, for the limit to exist at x = 1, c − 1 = 2 or
c = 3. At this value of c, the third condition of continuity
is also satisfied.

Final answer: c = 3, d = −1.

54. Where is f continuous? Use a sign chart, since the expres-
sion under the radical sign must be nonnegative (positive
or zero):

x− 1 − − + +
x + 2 − + + +
x− 2 − − − +

x < −2 −2 < x < 1 1 < x < 2 x > 2

Therefore, f(x) =

√
x−1
x2−4

is continuous on its domain,

which is:
−2 < x ≤ 1 or x > 2

55. Recall our setup- we want to let Q(t) be the kilograms of
salt at time t (NOT the concentration- that would require
a different equation). The differential equation is then:

dQ

dt
= Rate coming in− Rate going out

The rate coming in is

25
liters

minute
· 0.03

kg

liter
= 0.75

kg

min
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To compute the rate going out, there is Q kilograms of
salt in 5000 liters of water, so Q/5000 is the concentration
at time t. Therefore, the rate of salt leaving the tank is:

25
liters

min
·

Q

5000

kg

liters
= 0.005Q

kg

min

Now we have:

Q′ = 0.75−0.005Q = −0.005

(
Q−

0.75

0.005

)
= −0.005(Q−150)

which we write as:

(Q− 150)′ = −0.005(Q− 150) ⇒ Q(t) = Ae−0.005t + 150

We solve for A by noting that Q(0) = 20, so that

Q(t) = −130e−0.005t + 150

Now, after a half an hour (t = 30), we get Q(30) ≈ 38.11.

56. It might be interesting to compare the results of this prob-
lem if we assume that (i) the vertex is up, versus (ii) the
vertex is down. (An inverted cone has its vertex up, so
only (i) would be the solution to the problem as given):

(a) In this case, let r be the radius on the surface of the
water level at height h. Then the volume of water
in the cone is given by the full volume, and subtract
the empty cone on the top:

V =
π

3
π · 22 · 4−

π

3
πr2h

Now we need to write V in terms of h, since we are
trying to determine dh

dt
. From similar triangles, we

get:
2

4
=

r

4− h
r =

4− h

2
Now the volume becomes

V =
16π

3
−

π

12
(h3−8h2+16h)

dV

dt
= −

π

12
·(3h2−16h+16)

dh

dt

Now substitute dV
dt

= 2, h = 3 to find that dh
dt

= 24
5π

(b) If the cone had its vertex at the bottom, the problem
simplifies quite a bit. The volume of water is just
the volume of the small cone,

V =
π

3
r2h

where by similar triangles we get h = 2r. Substitut-
ing like we did earlier,

V =
π

12
h3 dV

dt
=

π

4
h2 ·

dh

dt

Substitute dV
dt

= 2 and h = 3 to get dh
dt

= 8
9π

57. We did something similar to this problem in class. Form a
right triangle where the hypotenuse is 25. The other two
sides have length x(t) and y(t) (for specificity, let x(t) be
the distance from the base of the wall to the base of the
ladder, and y(t) be the height of the ladder against the
wall). Then,

x2 + y2 = 625 ⇒ 2x
dx

dt
+ 2y

dy

dt
= 0

Now, we are given that dy
dt

= −1 and x = 6, so we still

need y in order to solve for dx
dt

. From our original equation,
if x = 6, then

y2 = 252 − 62 = 589 ⇒ y =
√

589

Now substitute these values in, and:

12
dx

dt
− 2

√
589 = 0 ⇒

dx

dt
=

√
589

6

58. The snowball equation is:

A = 4πr2

where A and r are functions of t. We need to write A in
terms of the diameter instead of in terms of the radius.
Let h be the diameter, h = 2r and substitute:

A = 4π
h2

4
= πh2

Differentiating with respect to time, we get:

dA

dt
= 2πh

dh

dt

We are told that dA
dt

= −1, h = 10 and solve for dh
dt

,

dh

dt
= −

1

20π
≈ −0.0159

59. For this tank mixing problem, we have:

dQ

dt
= 10 · 0− 10 ·

Q

1000
= −

1

100
Q

so the general solution is Q(t) = Ae−
1

100 t. Using the
initial condition that Q(0) = 15, we get:

Q(t) = 15e−
1

100 t

The mathematical model of Q says that there will never be
zero salt in any finite amount of time (although in practice,
the amount is negligible).
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