

1. Linearize the given function at the given point:

To "linearize" means to approximate the function by its tangent line. To compute the tangent line, we need a point and a slope. In general, this is:

$$y - f(a) = f'(a)(x - a)$$
 or $y = f(a) + f'(a)(x - a)$

(a) $f(x) = \frac{1}{x}$, a = 1

The point: (1,1/1) = (1,1). The slope is the derivative evaluated at 1,

$$f'(x) = -\frac{1}{x^2}, \quad f'(1) = -1$$

so the linearization of $f(x) = \frac{1}{x}$ at a = 1 is

$$y-1 = -(x-1)$$
 $y = 2-x$

(b) $f(x) = \tan^{-1}(x), a = 0$

The inverse tangent of 0 is 0 (since tan(0) = 0), so the point is the origin, (0,0). The slope is:

$$\frac{1}{1+x^2}$$

evaluated at 1 which gives a slope of 1. Therefore, the linearization is just y = x.

(c) $f(x) = \sqrt{x}, a = 9$

In this case, the point is (9,3) and the slope is $\frac{1}{2\sqrt{9}} = \frac{1}{6}$. The linearization is

$$y = 3 + \frac{1}{6}(x - 3)$$

2. Approximate $\sqrt{220}$ using a linearization (in this case, you need to choose an appropriate base point, x=a)

We choose a to be a perfect square close to 220. In this case, take $a = 15^2 = 226$. Then we are approximating $f(x) = \sqrt{x}$ close to a = 226:

$$y - 15 = \frac{1}{30}(x - 226)$$

so an approximation to $\sqrt{220}$ is:

$$\sqrt{220} \approx 15 - \frac{1}{30} \cdot 6 = \frac{74}{5}$$

We note that the approximation is 14.8, while the actual value is approximately 14.832397

3. Suppose that f(2) = -2 and f'(2) = 3. Give an approximation to f(2.3).

$$f(2.3) \approx f(2) + f'(2)(x-2) = -2 + 3 \cdot (2.3 - 2) = -2 + 3 \cdot 0.3 = -1.1$$

4. The volume of a sphere is dependent on its radius,

$$V = \frac{4}{3}\pi r^3$$

Linearize the volume at r = 1, and use it to approximate the volume when r = 1.1.

The linearization of volume is the tangent line at $(1, \frac{4}{\pi}3)$ with slope:

$$4\pi r^2$$
 at $r=1$ $\rightarrow 4\pi$

which is:

$$y = \frac{4\pi}{3} + 4\pi(r - 1)$$

Compare this with the actual volume if r = 1.1.

Compare the actual and estimated volume if r = 1.2, and r = 1.5. Are the approximations getting better or worse?

Now we compute the approximate and actual volumes using different radii, as suggested:

Radius	Estimated Vol	Actual Vol
1.0	$\frac{4}{3}$	$\frac{4}{3}$
1.1	5.4454	5.5753
1.2	6.7020	7.2382
1.5	10.472	14.1372

The approximation is getting much worse as we go away from r=1.

5. Let $f(x) = x^2 - 3$. Find the x-intercept of the tangent line through the graph of f at x = 4.

The tangent line at x = 4 is given by:

$$y - 13 = 8(x - 4)$$

so the x-intercept is given by setting y = 0 and solving for x,

$$-13 = 8(x-4) \Rightarrow x = 4 - \frac{13}{8} \approx 3.5493$$

6. Let $f(x) = 2\sin(x) - x$. Find the x-intercept of the tangent line through the graph of f at $x = \frac{\pi}{2}$.

The tangent line at $x = \frac{\pi}{2}$ is given by:

$$y - \left(2 - \frac{\pi}{2}\right) = -1\left(x - \frac{\pi}{2}\right)$$

Set y = 0 and solve for x to get that x = 2.

7. Use Newton's Method to find the solution to the equation that is accurate to 5 decimal places:

SOLUTION: We'll write down the solution in column format. Remember the general formula is:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

(a) $2\sin(x) = x$, x > 0 In this case, use $f(x) = 2\sin(x) - x$. Then we note that x = 0 is one solution, so we'll use a different guess. Let's start the approximation at $x = \frac{\pi}{2}$, since this was part of a previous exercise. Then:

x	f(x)	f'(x)	New x
1.570796327	0.429203673	-1.000000000	2.0000000000
2.0000000000	-0.181405146	-1.832293673	1.900995594
1.900995594	-0.009040087	-1.648463075	1.895511645
1.895511645	-0.000028467	-1.638077989	1.895494267
1.895494267	-0.000000000	-1.638045049	1.895494267
1.895494267			

(b) ln(x) = x - 4, x > 4

For the function, we'll take $\ln(x) - x + 4$, and for an initial guess, we'll take x = 1. Whoops! In that case, the derivative is zero... Take another initial guess. Maybe x = 2. In this case,

x	f(x)	f'(x)	New x
2.0000000000	2.693147181	-0.500000000	7.386294361
7.386294361	-1.386668192	-0.864614115	5.782494275
5.782494275	-0.027659150	-0.827064247	5.749051710
5.749051710	-0.000016789	-0.826058270	5.749031386
5.749031386	-0.000000000	-0.826057655	5.749031386
5.749031386			

(c) $x^3 = 8 - 4x$

In this case, we take $f(x) = x^3 + 4x - 8$, and guess that x = 2. Then:

x	f(x)	f'(x)	New x
2.0000000000	8.000000000	16.000000000	1.500000000
1.500000000	1.375000000	10.750000000	1.372093023
1.372093023	0.071528293	9.647917793	1.364679165
1.364679165	0.000225845	9.587047672	1.364655608
1.364655608	0.000000002	9.586854784	1.364655608
1.364655608			