Solutions to Exercises

1. Evaluate
$$\lim_{x\to 4} \frac{x^2-x-12}{x-4}$$

$$\lim_{x \to 4} \frac{x^2 - x - 12}{x - 4} = \lim_{x \to 4} \frac{(x+3)(x-4)}{x - 4} = 4 + 3 = 7$$

2. Evaluate
$$\lim_{x\to 2} \frac{x^3 - 5x^2 + 2x - 4}{x^2 - 3x + 3}$$
 Everything is defined; evaluate at $x = 2$.

$$\lim_{x \to 2} \frac{x^3 - 5x^2 + 2x - 4}{x^2 - 3x + 3} = -12$$

3. Find
$$\lim_{x \to \infty} \frac{2x+5}{x^2-7x+3}$$

Multiply numerator and denominator by $\frac{1}{r^2}$, getting

$$\lim_{x \to \infty} \frac{\frac{2}{x} + \frac{5}{x^2}}{1 - \frac{7}{x} + \frac{3}{x^2}} = \frac{0}{1} = 0$$

4. Evaluate $\lim_{x\to 0} \frac{\sqrt{x+3}-\sqrt{3}}{x}$ Rationalize numerator and denominator:

$$\lim_{x\to 0}\frac{\sqrt{x+3}-\sqrt{3}}{x}=\lim_{x\to 0}\frac{\sqrt{x+3}-\sqrt{3}}{x}\frac{\sqrt{x+3}+\sqrt{3}}{\sqrt{x+3}+\sqrt{3}}=\frac{(x+3)-3}{x(\sqrt{x+3}+\sqrt{3})}=\lim_{x\to 0}\frac{1}{\sqrt{x+3}+\sqrt{3}}=\frac{1}{2\sqrt{3}}$$

- 5. Evaluate $\lim_{x\to-\infty} (2x^3 12x^2 + x 7)$ The leading term will determine what happens: As $x\to-\infty$, the function goes to $-\infty$.
- 6. Evaluate $\lim_{x\to 2} \left(\frac{1}{x-2} \frac{4}{x^2-4}\right)$

Simplify the expression before attempting the limit:

$$\frac{1}{x-2} - \frac{4}{x^2 - 4} = \frac{(x+2) - 4}{x^2 - 4} = \frac{x-2}{(x+2)(x-2)} = \frac{1}{x+2}$$

Now, as $x \to 2$, the expression goes to $\frac{1}{4}$.

- 7. Evaluate $\lim_{x\to 3} \frac{1}{(x-3)^2}$ This is a shifted version of: $\lim_{x\to 0} \frac{1}{x^2}$, which is ∞ .
- 8. Find $\lim_{x \to \infty} \frac{4x 1}{\sqrt{x^2 + 2}}$

Multiply numerator and denominator by $\frac{1}{x}$ - For the denominator, this means $\frac{1}{\sqrt{x^2}}$:

$$\lim_{x \to \infty} \frac{4 - \frac{1}{x}}{\sqrt{1 + \frac{2}{x^2}}} = 4$$

9. Find
$$\lim_{x \to -\infty} \frac{4x-1}{\sqrt{x^2+2}}$$

Same idea as the last problem, but since x < 0, $x = -\sqrt{x^2}$. Multiply the numerator by $\frac{1}{x}$ and the denominator by $-\frac{1}{\sqrt{x^2}}$ (keep the negative sign out front):

$$\lim_{x \to \infty} \frac{4 - \frac{1}{x}}{-\sqrt{1 + \frac{2}{x^2}}} = -4$$

1

10. Find $\lim_{x\to 2^+} f(x)$ and $\lim_{x\to 2^-} f(x)$ if:

$$f(x) = \begin{cases} 7x - 2, & \text{if } x \ge 2\\ 3x + 5, & \text{if } x < 2 \end{cases}$$

 $\lim_{x\to 2^+} f(x)$ is found by using the top function, since x>2. The limit is 7(2)-2=12.

 $\lim_{x\to 2^-} f(x)$ is found by using the bottom function, since x<2. The limit is 3(2)+5=11

Because the limits from the right and left are not the same, the function is not continuous at x=2.

11. Find $\lim_{x \to 2} \frac{\sqrt{x+2} - \sqrt{2x}}{x^2 - 2x}$

Rationalize and simplify, then take the limit:

$$\frac{\sqrt{x+2}-\sqrt{2x}}{x^2-2x}\cdot\frac{\sqrt{x+2}+\sqrt{2x}}{\sqrt{x+2}+\sqrt{2x}} = \frac{x+2-2x}{x(x-2)(\sqrt{x+2}+\sqrt{2x})} = \frac{-1}{x(\sqrt{x+2}+\sqrt{2x})}$$

so the limit is: $\frac{-1}{2(\sqrt{4}+\sqrt{4})} = \frac{-1}{8}$

12. Find $\lim_{x \to 2^+} f(x)$ and $\lim_{x \to 2^-} f(x)$ if $f(x) = \frac{|x-2|}{x-2}$

We see that: |x-2| = x-2 if x > 2 and |x-2| = -(x-2) if x < 2. Therefore, the right limit is 1 and the left limit is -1.

13. Find $\lim_{x \to \infty} \tan^{-1}(2x+1)$

As $x \to \infty$, then $2x+1 \to \infty$. If the input to $\tan^{-1}(x)$ goes to positive infinity, then $\tan^{-1}(x)$ approaches its horizontal asymptote at $y = \frac{\pi}{2}$, so the limit is $\frac{\pi}{2}$.

14. Find $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$, if $f(x) = x^2 - 4x$.

First get the expression requested and simplify before taking the limit:

$$\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 - 4(x+h) - [x^2 - 4x]}{h} = \frac{x^2 + 2xh + h^2 - 4x - 4h - x^2 + 4x}{h} = 2x + h - 4x + h - 4x + h - 2x +$$

Now, take the limit to get the answer of 2x - 4.

15. Find all vertical and horizontal asymptotes for $\sqrt{x+1} - \sqrt{x}$

There are no vertical asymptotes, and the domain is $x \ge 0$, so we only (perhaps) have a horizontal asymptote:

$$\lim_{x\to\infty}\sqrt{x+1}-\sqrt{x}=\lim_{x\to\infty}\sqrt{x+1}-\sqrt{x}\cdot\frac{\sqrt{x+1}+\sqrt{x}}{\sqrt{x+1}+\sqrt{x}}=\lim_{x\to\infty}\frac{(x+1)-x}{\sqrt{x+1}+\sqrt{x}}=0$$

16. Find all vertical and horizontal asymptotes for $\frac{x^2-5x+6}{x-3}$

First, factor the numerator to see if we can simplify:

$$\frac{x^2 - 5x + 6}{x - 3} = \frac{(x - 3)(x + 2)}{x - 3} = x + 2, \text{ if } x \neq 3$$

We see that there are no vertical or horizontal asymptotes.

17. Find all vertical and horizontal asymptotes for $\frac{2x+3}{\sqrt{x^2-2x-3}}$

First, factor out the denominator: $x^2 - 2x - 3 = (x - 3)(x + 1)$. Since these do not cancel with the numerator, there are vertical asymptotes at x = 3 and x = -1. Now for the horizontal asymptotes:

$$\lim_{x \to \infty} \frac{2x+3}{\sqrt{x^2 - 2x - 3}} = \lim_{x \to \infty} \frac{2 + \frac{3}{x}}{\sqrt{1 - \frac{2}{x} - \frac{3}{x^2}}} = 2$$

Note that we used the fact that, if x > 0, then $x = \sqrt{x^2}$. If we take $x \to -\infty$, we use the fact that $x = -\sqrt{x^2}$:

$$\lim_{x \to -\infty} \frac{2x+3}{\sqrt{x^2 - 2x - 3}} = \lim_{x \to -\infty} \frac{2 + \frac{3}{x}}{-\sqrt{1 - \frac{2}{x} - \frac{3}{x^2}}} = -2$$

18. Evaluate $\lim_{x\to 2} \frac{\sqrt{x^2+5}-3}{x^2-2x}$

$$\lim_{x \to 2} \frac{\sqrt{x^2 + 5} - 3}{x^2 - 2x} = \lim_{x \to 2} \frac{\sqrt{x^2 + 5} - 3}{x(x - 2)} \cdot \frac{\sqrt{x^2 + 5} + 3}{\sqrt{x^2 + 5} + 3} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x(x - 2)(\sqrt{x^2 + 5} + 3)} = \frac{1}{3}$$

19. Evaluate $\lim_{x \to \infty} (\sqrt{x^2 + 2x} - x)$

$$\lim_{x \to \infty} (\sqrt{x^2 + 2x} - x) \cdot \frac{\sqrt{x^2 + 2x} + x}{\sqrt{x^2 + 2x} + x} = \lim_{x \to \infty} \frac{x^2 + 2x - x^2}{\sqrt{x^2 + 2x} + x} = \lim_{x \to \infty} \frac{2}{\sqrt{1 + \frac{2}{x}} + 1} = 1$$

20. Find
$$\lim_{x \to \pm \infty} \frac{7x^3 + 2x^2}{4x^3 - x} = \lim_{x \to \pm \infty} \frac{7 + \frac{2}{x}}{4 - \frac{1}{x^2}} = \frac{7}{4}$$

21. Find
$$\lim_{x \to \infty} \frac{2x+1}{\sqrt[3]{x^3-2}} = \lim_{x \to \infty} \frac{2+\frac{1}{x}}{\sqrt[3]{1-\frac{2}{x^3}}} = 2$$

22. Find
$$\lim_{x \to -\infty} \frac{3x+2}{\sqrt{x^2-1}} = \lim_{x \to -\infty} \frac{3+\frac{2}{x}}{-\sqrt{1-\frac{1}{x^2}}} = -3$$

23. Evaluate: $\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{|x|}\right)$

Notice that, for x > 0, $\frac{1}{x} - \frac{1}{|x|} = \frac{1}{x} - \frac{1}{x} = 0$. Therefore, $\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{|x|} \right) = 0$

Side Remark: if x < 0, then $\frac{1}{x} - \frac{1}{|x|} = \frac{1}{x} + \frac{1}{x} = \frac{2}{x}$

24. Let

$$h(x) = \begin{cases} x, & \text{if } x < 0 \\ x^2, & \text{if } 0 < x \le 2 \\ 8 - x, & \text{if } x > 2 \end{cases}$$

Evaluate the following, if they exist.

(a)
$$\lim_{x\to 0^+} h(x) = 0$$
 (Use $h(x) = x^2$)

(b)
$$\lim_{x\to 0^-} h(x) = 0$$
 (Use $h(x) = x$)

(c)
$$\lim_{x \to 1} h(x) = 1$$
 (Use $h(x) = x^2$)

(d)
$$\lim_{x \to 2^+} h(x) = 6$$
 (Use $h(x) = 8 - x$)

(e)
$$\lim_{x \to 2^{-}} h(x) = 4$$
 (Use $h(x) = x^{2}$)

(f)
$$\lim_{x\to 2} h(x)$$
 By (d) and (e), DNE

25. Evaluate
$$\lim_{x \to 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1} = \lim_{x \to 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1} \cdot \frac{\sqrt{6-x}+2}{\sqrt{6-x}+2} \cdot \frac{\sqrt{3-x}+1}{\sqrt{3-x}+1} = \lim_{x \to 2} \frac{\sqrt{3-x}+1}{\sqrt{6-x}+2} = \frac{1}{2}$$

3

26. Show that $\lim_{x\to 0} \sqrt{x} e^{\sin(\pi/x)} = 0$

First, note that: $\sin(\pi/x)$ is always between 1 and -1, for all $x \neq 0$. This means that

$$\sqrt{x}e^{-1} \le \sqrt{x} e^{\sin(\pi/x)} \le \sqrt{x} \cdot e^{1}$$

and the first and last expressions go to zero as x goes to zero. By the Squeeze Theorem, $\lim_{x\to 0} \sqrt{x} e^{\sin(\pi/x)} = 0$.

27. Evaluate $\lim_{x \to -\infty} \frac{r^4 - r^2 + 1}{r^5 + r^3 - r}$

Divide numerator and denominator by r^5 , and we get:

$$\lim_{x \to -\infty} \frac{\frac{1}{r} - \frac{1}{r^3} + \frac{1}{r^5}}{1 + \frac{1}{r^2} - \frac{1}{r^4}} = 0$$

- 28. Evaluate $\lim_{x \to \infty} \frac{1 \sqrt{x}}{1 + \sqrt{x}} = \lim_{x \to \infty} \frac{\frac{1}{\sqrt{x}} 1}{\frac{1}{\sqrt{x}} + 1} = -1$
- 29. Evaluate $\lim_{x\to -\infty} \frac{6t^2+5t}{(1-t)(2t-3)}$ It might be easiest to multiply the denominator out. Doing that, and dividing numerator and denominator by t^2 gives an answer of -3.
- 30. Evaluate $\lim_{x\to\infty} \frac{7t^3+4t}{2t^3-t^2+3}$ Divide numerator and denominator by t^3 to get an answer of $\frac{7}{2}$