Summary: Exponentials and Logs

(1) The rules of exponents and logs, and some definitions.

Logarithms

$y = a^x, a > 0$	$y = \log_a(x)$
Domain: All Reals	Domain: $x > 0$
Range: $y > 0$	Range: All Reals
Points on the Graph:	
(0,1)	(1,0)
(1,a)	(a,1)
(-1, 1/a)	(1/a, -1)
Rules for manipulation:	
NOTE: $a^b - a$ is equivalent to $\log (a) - b$	

NOTE:
$$a^b=c$$
 is equivalent to $\log_a(c)=b$ $a^0=1$ $\log_a(1)=0$ $\log_a(x)=x, x>0$ $\log_a(a^x)=x, \text{ all } x$ $a^xa^y=a^{x+y}$ $\log_a(xy)=\log_a(x)+\log_a(y)$ $1/(a^x)=a^{-x}$ $\log_a(1/x)=-\log_a(x)$ $\log_a(x/y)=\log_a(x)-\log_a(y)$ $a^{p/q}=\sqrt[q]{a^p}$ $(a^x)^y=a^{xy}$ $(ab)^x=a^xb^x$ $\log_a(x^r)=r\log_a(x)$ $\log_a(x)=\frac{\log_c(x)}{\log_c(a)}$

- (2) Base e:
 - (a) Define e to be that number that is approached by taking n sufficiently large: $\left(1+\frac{1}{n}\right)^n$. Thus, e appears as a natural growth constant. Numerically, e is approximately 2.7182818284...
 - e is irrational, so its decimal expansion is non-repeating.

Treat e as you would π .

- (b) Definition: The natural logarithm: $\log_e(x) = \ln(x)$.
- (c) $y = e^x$ and $y = \ln(x)$ are inverses of each other, so

$$e^{\ln(x)} = x$$
 for $x > 0$, and $\ln(e^x) = x$ for all x

- (d) All the rules above apply; replace a by e and \log_e by \ln .
- (e) All scientific calculators can compute using base e, so we can use it to compute other logs. For example,

$$\log_3(5) = \frac{\ln(5)}{\ln(3)}$$

1