Worked Problems: Exponentials and Logs (SOLUTIONS)

1. Rewrite the following to its equivalent form. That is, given an exponential expression, rewrite to a logarithmic expression; and given a logarithmic expression, rewrite to an exponential form.

For each of these, we'll use the equivalence:

$$
\log _{a}(b)=c \quad \Leftrightarrow \quad a^{c}=b
$$

For example, since $3^{2}=9$, then $\log _{3}(9)=2$.
(a) $\log _{2}(x)=3$

Solution: $2^{3}=x$
(b) $\mathrm{e}^{x} \mathrm{e}^{5}=4$

Solution 1: $\mathrm{e}^{x}=4 \mathrm{e}^{-5}$, so $\ln \left(4 \mathrm{e}^{-5}\right)=x$
We can simplify this using $\log (a b)=\log (a)+\log (b)$ to:

$$
x=\ln (4)+\ln \left(\mathrm{e}^{-5}\right)=\ln (4)-5
$$

Solution 2: From the rule $a^{b} a^{c}=a^{b+c}$, we can rewrite the left hand side:

$$
\mathrm{e}^{x+5}=4 \quad \Rightarrow \quad \ln (4)=x+5
$$

(c) $2 \ln (x)+\ln (x-1)=4$ Use two rules, $\log \left(a^{b}\right)=b \log (a)$ and $\log (a b)=\log (a)+\log (b)$ to simplify first:

$$
\ln \left(x^{2}(x-1)\right)=4 \quad \Rightarrow \quad x^{2}(x-1)=\mathrm{e}^{4}
$$

(d) $3^{x-5} 2^{x}=5$ HINT- You might need to use the following: Any number $a>0$ can be written as $\mathrm{e}^{\ln (a)}$ and $a^{b} a^{c}=a^{b+c}$
Using the hint, we'll rewrite everything in base $e: 3=\mathrm{e}^{\ln (3)}$ and $2=\mathrm{e}^{\ln (2)}$, so that

$$
3^{x-5} 2^{x}=\mathrm{e}^{\ln (3) \cdot(x-5)} \mathrm{e}^{\ln (2) \cdot x}=\mathrm{e}^{\ln (3) \cdot(x-5)+\ln (2) \cdot x}
$$

Now,

$$
\mathrm{e}^{\ln (3) \cdot(x-5)+\ln (2) \cdot x}=5 \quad \Rightarrow \quad \ln (3)(x-5)+\ln (2) x=\ln (5)
$$

(e) $\ln (3 x)-4 \ln (x+2)=6$ Use the rules that $\log \left(a^{b}\right)=b \log (a)$ and $\log (a / b)=$ $\log (a)-\log (b):$

$$
\ln \left(\frac{3 x}{(x+2)^{4}}\right)=6 \quad \Rightarrow \quad e^{6}=\frac{3 x}{(x+2)^{4}}
$$

2. Solve the following for x :
(a) $5^{2 x-3}=4$

$$
\log _{5}(4)=2 x-3 \quad \Rightarrow \quad x=\frac{\log _{5}(4)+3}{2}
$$

(b) $3^{x(x-1)}=2$

$$
\log _{3}(2)=x(x-1) \quad \Rightarrow \quad x^{2}-x-\log _{3}(2)=0
$$

Use the quadratic formula,

$$
x=\frac{1 \pm \sqrt{1+4 \log _{3}(2)}}{2}
$$

(c) $\log _{2}(x+3)-\log _{2}(x)=1$

Rewrite as a single log, remove the logarithms, then solve:

$$
\log _{2}(x+3)-\log _{2}(x)=\log _{2}((x+3) / x)
$$

Now,

$$
\log _{2}((x+3) / x)=1 \quad \Rightarrow \quad 2=\frac{x+3}{x} \quad \Rightarrow \quad 2 x=x+3 \quad \Rightarrow \quad x=3
$$

(d) $2 \log _{9}\left(\frac{x}{3}\right)=1$

Solution 1:

$$
\log _{9}(x / 3)=\frac{1}{2} \Rightarrow \frac{x}{3}=9^{1 / 2}=\sqrt{9}=3 \Rightarrow x=9
$$

Solution 2:

$$
\log _{9}\left(x^{2} / 9\right)=1 \Rightarrow \frac{x^{2}}{9}=9 \Rightarrow x^{2}=81 \Rightarrow x= \pm 9
$$

We note that $x=-9$ is not in the domain, therefore our answer is $x=9$
(e) $\log _{4}\left(\frac{1}{2 x}\right)=3$

$$
\frac{1}{2 x}=4^{3} \Rightarrow 2 x=4^{-3} \Rightarrow x=\frac{1}{2 \cdot 4^{3}}=\frac{1}{128}
$$

(f) $12^{1 /(x-1)}=4$

$$
\log _{12}(4)=\frac{1}{x-1} \Rightarrow x-1=\frac{1}{\log _{12}(4)} \Rightarrow x=\frac{1}{\log _{12}(4)}+1
$$

Miscellaneous questions:

1. Determine the domain of $f(x)=\ln (x(x-1))$. For which x can this be rewritten as $\ln (x)+\ln (x-1) ?$
SOLUTION: Use a sign chart, since we need $x(x-1)>0$:

$$
\begin{array}{c|ccc}
x & - & + & + \\
x-1 & - & - & + \\
\hline & x<0 & 0<x<1 & x>1
\end{array}
$$

From the chart, $x(x-1)>0$ if $x<0$ or if $x>1$.
In order for $\ln (x(x-1))=\ln (x)+\ln (x-1)$, both x and $x-1$ must be positive, so this would change the domain to $x>1$.
2. If $f(x)=2^{x}$ and $g(x)=\log _{2}(x)$, compute $f(g(x))$ and $g(f(x))$, and find the domain of each.

$$
\begin{gathered}
f(g(x))=2^{\log _{2}(x)}=x, \text { for all } x>0 \\
g(f(x))=\log _{2}\left(2^{x}\right)=x \log _{2}(2)=x \text { for all } x
\end{gathered}
$$

3. If $f(x)=3^{x}$, what is $f^{-1}(x)$?

The inverse of a^{x} is $\log _{a}(x)$, so in this case, $f^{-1}=\log _{3}(x)$.
4. Rewrite 4 as e^{A} for an appropriate A.

$$
4=\mathrm{e}^{\ln (4)}
$$

