Extra Practice: Function Notation and Sign Charts

- 1. Let $f(x) = \sqrt{x}$. Find an expression for f(ax+b). Find an expression for f(x+h) f(x).
- 2. Let $f(x) = \frac{2}{x}$. Find and simplify the expression for $\frac{f(x+h) f(x)}{h}$
- 3. Let $f(x) = x^2 3x$. Find and simplify the expression for f(3x 4). Find and simplify the expression for f(x + h) f(x).
- 4. Let f(x) = 4. Find and simplify the expression for $\frac{f(x+h) f(x)}{h}$
- 5. Let $f(x) = 2^x$, x = 1 and h = 2. Find and simplify the expression for $\frac{f(x+h) f(x)}{h}$.
- 6. Find the domain: $f(x) = \sqrt{\frac{3x x^2}{x + 2}}$
- 7. Find the domain: $f(x) = \ln(x(x+2)(x-3))$
- 8. Solve for x, if $x^3 x \ge 0$
- 9. The following are False; explain why. If possible, change the statement so that it is true.
 - (a) Let a, b > 0. Then $\sqrt{a^2 + b^2} = a + b$
 - (b) $\ln(x(x-1)/x+2) = \ln(x) + \ln(x-1) \ln(x+2)$ for all x.
 - (c) Let $f(x) = x^{-1}$. Then

$$\frac{f(x+h) - f(x)}{h} = \frac{x^{-1} + h - x^{-1}}{h} = 1$$

- (d) $\ln(a+b) = \ln(a) + \ln(b)$ if a, b > 0.
- (e) $(a+b)^2 = a^2 + b^2$
- 10. Misc. Algebra problems:
 - (a) Solve for y: $x = \frac{6y-5}{y+1}$
 - (b) Solve for x in terms of y, z: $\frac{6}{x} = \frac{11}{y} + \frac{15}{z}$
 - (c) Simplify and write without negative exponents: $\frac{4x^{-9}y^{-5}}{9x^{-3}y^{-9}}$
 - (d) Simplify: $(x^{4/7}y^{-4/9})^{9/4}$
 - (e) Simplify: $\frac{\frac{3s^2 48}{s^2 + 2s 8}}{\frac{7s 28}{s^2 4s + 4}}$