## Extra Practice SOLUTIONS: Function Notation and Sign Charts

1. Let $f(x)=\sqrt{x}$. Find an expression for $f(a x+b)$. Find an expression for $f(x+h)-f(x)$.

If $f(x)=\sqrt{x}$, then $f(a x+b)=\sqrt{a x+b}$. Also, $f(x+h)=\sqrt{x+h}$, so that

$$
f(x+h)-f(x)=\sqrt{x+h}-\sqrt{x}
$$

2. Let $f(x)=\frac{2}{x}$. Find and simplify the expression for $\frac{f(x+h)-f(x)}{h}$

In this case, $f(x+h)=\frac{2}{x+h}$, and

$$
\begin{gathered}
\frac{f(x+h)-f(x)}{h}=\frac{\frac{2}{x+h}-\frac{2}{x}}{h}=\frac{\frac{x}{x} \cdot \frac{2}{x+h}-\frac{x+h}{x+h} \cdot \frac{2}{x}}{\frac{h}{1}}=\frac{2 x-2(x+h)}{x(x+h)} \cdot \frac{1}{h}= \\
\frac{-2 h}{x(x+h)} \cdot \frac{1}{h}=\frac{-2}{x(x+h)}
\end{gathered}
$$

3. Let $f(x)=x^{2}-3 x$. Find and simplify the expression for $f(3 x-4)$. Find and simplify the expression for $f(x+h)-f(x)$.
The expression for $f(3 x-4)$ is $(3 x-4)^{2}-3(3 x-4)$. Simplify this to get $f(3 x-4)=$ $9 x^{2}-33 x+28$.
Similarly, $f(x+h)=(x+h)^{2}-3(x+h)=x^{2}+2 x h+h^{2}-3 x-3 h$, so that

$$
f(x+h)-f(x)=2 x h+h^{2}-3 h
$$

4. Let $f(x)=4$. Find and simplify the expression for $\frac{f(x+h)-f(x)}{h}$

Since $f$ of anything is 4 ,

$$
\frac{f(x+h)-f(x)}{h}=\frac{4-4}{h}=0
$$

5. Let $f(x)=2^{x}, x=1$ and $h=2$. Find and simplify the expression for $\frac{f(x+h)-f(x)}{h}$.

We might get the algebraic expression first, then plug in values:

$$
\frac{f(x+h)-f(x)}{h}=\frac{2^{x+h}-2^{x}}{h}=\frac{2^{1+2}-2^{1}}{2}=\frac{6}{2}=3
$$

NOTE: The next few exercises deal with using a sign chart. In general, use a sign chart to determine where an expression is positive or negative.
6. Find the domain: $f(x)=\sqrt{\frac{3 x-x^{2}}{x+2}}$

Use a sign chart- we want $\frac{x(3-x)}{x+2} \geq 0$

$$
\begin{array}{c|cccc}
x & - & - & + & + \\
3-x & + & + & + & - \\
x+2 & - & + & + & + \\
\hline & x<-2 & -2<x<0 & 0<x<3 & x>3 \\
& \text { POS } & \text { NEG } & \text { POS } & \text { NEG }
\end{array}
$$

From this, we see that $x<-2$ or $0<x<3$. We can also include the points 0 and 3 but not $x=-2$, so our final answer is:

$$
x<-2 \text { or } 0 \leq x \leq 3
$$

7. Find the domain: $f(x)=\ln (x(x+2)(x-3))$

Again, use a sign chart to determine where $x(x+2)(x-3)>0$ :

$$
\begin{array}{r|cccc}
x & - & - & + & + \\
x+2 & - & + & + & + \\
x-3 & - & - & - & + \\
\hline & x<-2 & -2<x<0 & 0<x<3 & x>3 \\
& \text { NEG } & \text { POS } & \text { NEG } & \text { POS }
\end{array}
$$

From this, we see that $-2<x<0$ or $x>3$. We cannot include $x=0,-2$ or 3 , since $\ln (0)$ is not defined.
8. Solve for $x$, if $x^{3}-x \geq 0$

Sign chart again- Factor completely first: $x(x+1)(x-1) \geq 0$

$$
\begin{array}{r|cccc}
x & - & - & + & + \\
x+1 & - & + & + & + \\
x-1 & - & - & - & + \\
\hline & x<-1 & -1<x<0 & 0<x<1 & x>1 \\
& \text { NEG } & \text { POS } & \text { NEG } & \text { POS }
\end{array}
$$

Therefore, $x^{3}-x \geq 0$ for $-1 \leq x \leq 0$ or $x \geq 1$
9. The following are False; explain why. If possible, change the statement so that it is true.
(a) Let $a, b>0$. Then $\sqrt{a^{2}+b^{2}}=a+b$

This is not a rule of algebra. We cannot simplify $\sqrt{a^{2}+b^{2}}$.
(b) $\ln (x(x-1) / x+2)=\ln (x)+\ln (x-1)-\ln (x+2)$ for all $x$.

This is false because of for all $x$. It is true for all $x>1$ (that is, where $x, x-1$ and $x+2$ are all positive).
(c) Let $f(x)=x^{-1}$. Then

$$
\frac{f(x+h)-f(x)}{h}=\frac{x^{-1}+h-x^{-1}}{h}=1
$$

This is false because $f(x+h)$ has not been computed correctly. If $f(x)=x^{-1}$, then $f(x+h)=(x+h)^{-1}=\frac{1}{x+h}$. Now,

$$
\frac{f(x+h)-f(x)}{h}=\frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\left(\frac{x-(x+h)}{x(x+h)}\right) \cdot \frac{1}{h}=\frac{-1}{x(x+h)}
$$

(d) $\ln (a+b)=\ln (a)+\ln (b)$ if $a, b>0$.

This is false because we cannot simplify $\ln (a+b)$.
(e) $(a+b)^{2}=a^{2}+b^{2}$.

This is false because we have forgotten the "middle terms":

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

10. Misc. Algebra problems:
(a) Solve for $y$ : $x=\frac{6 y-5}{y+1}$

$$
\begin{gathered}
x(y+1)=6 y-5 \Rightarrow x y+x=6 y-5 \Rightarrow x y-6 y=-5-x \Rightarrow \\
y(x-6)=-(x+5) \Rightarrow y=-\frac{x+5}{x-6}
\end{gathered}
$$

(b) Solve for $x$ in terms of $y, z: \frac{6}{x}=\frac{11}{y}+\frac{15}{z}$

$$
\frac{6}{x}=\frac{11 z+15 y}{y z} \Rightarrow 6 y z=(11 z+15 y) x \Rightarrow x=\frac{6 y z}{11 z+15 y}
$$

NOTE: The following is a common ERROR: $\frac{x}{6}=\frac{y}{11}+\frac{z}{15} \Rightarrow x=\frac{6 y}{11}+\frac{6 z}{15}$ This is because $\frac{a}{b+c} \neq \frac{a}{b}+\frac{a}{c}$ (but we can write $\frac{a+b}{c}$ as $\frac{a}{c}+\frac{b}{c}$ )
(c) Simplify and write without negative exponents: $\frac{4 x^{-9} y^{-5}}{9 x^{-3} y^{-9}}=\frac{4 y^{9-5}}{9 x^{9-3}}=\frac{4 y^{4}}{9 x^{6}}$
(d) Simplify: $\left(x^{4 / 7} y^{-4 / 9}\right)^{9 / 4}=x^{\frac{4}{7} \cdot \frac{9}{4}} y^{-\frac{4}{9} \cdot \frac{9}{4}}=\frac{x^{9 / 7}}{y}$

NOTE: Recall that $x^{p / q}=(\sqrt[q]{x})^{p}$
(e) Simplify: $\frac{\frac{3 s^{2}-48}{s^{2+2 s-8}}}{\frac{7 s-28}{s^{2}-4 s+4}}=\frac{3(s+4)(s-4)}{(s+4)(s-2)} \cdot \frac{(s-2)^{2}}{7(s-4)}=\frac{3}{7}(s-2)$

