Extra Practice SOLUTIONS: Function Notation and Sign Charts

1. Let $f(x) = \sqrt{x}$. Find an expression for f(ax+b). Find an expression for f(x+h) - f(x). If $f(x) = \sqrt{x}$, then $f(ax+b) = \sqrt{ax+b}$. Also, $f(x+h) = \sqrt{x+h}$, so that

$$f(x+h) - f(x) = \sqrt{x+h} - \sqrt{x}$$

2. Let $f(x) = \frac{2}{x}$. Find and simplify the expression for $\frac{f(x+h) - f(x)}{h}$ In this case, $f(x+h) = \frac{2}{x+h}$, and

$$\frac{f(x+h) - f(x)}{h} = \frac{\frac{2}{x+h} - \frac{2}{x}}{h} = \frac{\frac{x}{x} \cdot \frac{2}{x+h} - \frac{x+h}{x+h} \cdot \frac{2}{x}}{\frac{h}{1}} = \frac{2x - 2(x+h)}{x(x+h)} \cdot \frac{1}{h} = \frac{-2h}{x(x+h)} \cdot \frac{1}{h} = \frac{-2}{x(x+h)}$$

3. Let $f(x) = x^2 - 3x$. Find and simplify the expression for f(3x - 4). Find and simplify the expression for f(x + h) - f(x). The expression for f(3x - 4) is $(3x - 4)^2 - 3(3x - 4)$. Simplify this to get $f(3x - 4) = 9x^2 - 33x + 28$. Similarly, $f(x + h) = (x + h)^2 - 3(x + h) = x^2 + 2xh + h^2 - 3x - 3h$, so that

$$f(x+h) - f(x) = 2xh + h^2 - 3h$$

4. Let f(x) = 4. Find and simplify the expression for $\frac{f(x+h) - f(x)}{h}$ Since f of anything is 4,

$$\frac{f(x+h) - f(x)}{h} = \frac{4-4}{h} = 0$$

5. Let $f(x) = 2^x$, x = 1 and h = 2. Find and simplify the expression for $\frac{f(x+h) - f(x)}{h}$. We might get the algebraic expression first, then plug in values:

$$\frac{f(x+h) - f(x)}{h} = \frac{2^{x+h} - 2^x}{h} = \frac{2^{1+2} - 2^1}{2} = \frac{6}{2} = 3$$

NOTE: The next few exercises deal with using a sign chart. In general, use a sign chart to *determine where an expression is positive or negative*.

6. Find the domain: $f(x) = \sqrt{\frac{3x - x^2}{x + 2}}$ r(3 - x)

Use a sign chart- we want $\frac{x(3-x)}{x+2} \ge 0$

x	—	—	+	+
3-x	+	+	+	_
x+2	—	+	+	+
	x < -2	-2 < x < 0	0 < x < 3	x > 3
	POS	NEG	POS	NEG

From this, we see that x < -2 or 0 < x < 3. We can also include the points 0 and 3 but not x = -2, so our final answer is:

$$x < -2$$
 or $0 \le x \le 3$

7. Find the domain: $f(x) = \ln (x(x+2)(x-3))$

Again, use a sign chart to determine where x(x+2)(x-3) > 0:

From this, we see that -2 < x < 0 or x > 3. We cannot include x = 0, -2 or 3, since $\ln(0)$ is not defined.

8. Solve for x, if $x^3 - x \ge 0$

Sign chart again- Factor completely first: $x(x+1)(x-1) \ge 0$

x	_	_	+	+
x + 1	_	+	+	+
x - 1	—	—	—	+
	x < -1	-1 < x < 0	0 < x < 1	x > 1
	NEG	POS	NEG	POS

Therefore, $x^3 - x \ge 0$ for $-1 \le x \le 0$ or $x \ge 1$

- 9. The following are False; explain why. If possible, change the statement so that it is true.
 - (a) Let a, b > 0. Then $\sqrt{a^2 + b^2} = a + b$

This is not a rule of algebra. We cannot simplify $\sqrt{a^2 + b^2}$.

- (b) $\ln(x(x-1)/x+2) = \ln(x) + \ln(x-1) \ln(x+2)$ for all x. This is false because of **for all** x. It is true for all x > 1 (that is, where x, x - 1 and x + 2 are all positive).
- (c) Let $f(x) = x^{-1}$. Then

$$\frac{f(x+h) - f(x)}{h} = \frac{x^{-1} + h - x^{-1}}{h} = 1$$

This is false because f(x+h) has not been computed correctly. If $f(x) = x^{-1}$, then $f(x+h) = (x+h)^{-1} = \frac{1}{x+h}$. Now,

$$\frac{f(x+h) - f(x)}{h} = \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \left(\frac{x - (x+h)}{x(x+h)}\right) \cdot \frac{1}{h} = \frac{-1}{x(x+h)}$$

- (d) $\ln(a+b) = \ln(a) + \ln(b)$ if a, b > 0. This is false because we cannot simplify $\ln(a+b)$.
- (e) $(a+b)^2 = a^2 + b^2$.

This is false because we have forgotten the "middle terms":

$$(a+b)^2 = a^2 + 2ab + b^2$$

10. Misc. Algebra problems:

(a) Solve for $y: x = \frac{6y-5}{y+1}$ $x(y+1) = 6y-5 \Rightarrow xy+x = 6y-5 \Rightarrow xy-6y = -5-x \Rightarrow$ $y(x-6) = -(x+5) \Rightarrow y = -\frac{x+5}{x-6}$ (b) Solve for x in terms of $y, z: \frac{6}{x} = \frac{11}{y} + \frac{15}{z}$ $\frac{6}{x} = \frac{11z+15y}{yz} \Rightarrow 6yz = (11z+15y)x \Rightarrow x = \frac{6yz}{11z+15y}$ NOTE: The following is a common **ERROR**: $\frac{x}{6} = \frac{y}{11} + \frac{z}{15} \Rightarrow x = \frac{6y}{11} + \frac{6z}{15}$ This is because $\frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}$ (but we **can** write $\frac{a+b}{c}$ as $\frac{a}{c} + \frac{b}{c}$) (c) Simplify and write without negative exponents: $\frac{4x^{-9}y^{-5}}{9x^{-3}y^{-9}} = \frac{4y^{9-5}}{9x^{9-3}} = \frac{4y^4}{9x^6}$ (d) Simplify: $(x^{4/7}y^{-4/9})^{9/4} = x^{\frac{4}{7}\cdot\frac{9}{4}}y^{-\frac{4}{9}\cdot\frac{9}{4}} = \frac{x^{9/7}}{y}$ NOTE: Recall that $x^{p/q} = (\sqrt[q]{x})^p$ (e) Simplify: $\frac{\frac{3s^2-48}{s^2+2s-8}}{s^2-4s+4} = \frac{3(s+4)(s-4)}{(s+4)(s-2)} \cdot \frac{(s-2)^2}{7(s-4)} = \frac{3}{7}(s-2)$