Extra Practice: Algebra and Trig

1. Perform each of the following operations:

(a)
$$\frac{3s^2 - 48}{s^2 + 2s - 8} \div \frac{7s - 28}{s^2 - 4s + 4}$$

(b)
$$\frac{\frac{1}{p} + \frac{1}{q}}{1 - \frac{1}{pq}}$$

2. Simplify each of the following:

(a)
$$\frac{(p+1)^{1/2} - p(1/2)(p+1)^{-1/2}}{p+1}$$

(b)
$$\frac{3(2x^2+5)^{1/3} - x(2x^2+5)^{-2/3}(4x)}{(2x^2+5)^{2/3}}$$

(c)
$$\frac{(r-2)^{2/3} - r(2/3)(r-2)^{-1/2}}{(r-2)^{4/3}}$$

3. Practice with rules of exponents: Simplify, writing each expression without negative exponents:

(a)
$$\frac{6r^3s^{-2}}{6^{-1}r^4s^{-3}}$$

(b)
$$\frac{(2x^{-3})^2(3x^2)^{-2}}{6(x^2y^3)^{-1}}$$

4. Practice with the inverse trigonometric functions (See Section 1.6)

(a) Find the exact value of each expression:

$$\cos^{-1}(-1)$$
 $\arctan(1)$ $\sin^{-1}(1/\sqrt{2})$ $\tan^{-1}(1/\sqrt{3})$

(b) Show (using a triangle) that $\cos(\sin^{-1}(x)) = \sqrt{1-x^2}$, then simplify $\tan(\cos^{-1}(x))$ using a similar technique.

5. Solve for x:

(a)
$$2\cos(x) + 1 > 0$$
 (in the interval $[0, 2\pi]$)

(b)
$$(x-2)/(x^2-2x-3) \le 0$$

(c)
$$\sin(x) > \cos(x)$$
 (in the interval $[0, 2\pi]$)

Solutions

1. Perform each of the following operations:

(a)
$$\frac{7}{3(s-2)}$$

(b)
$$\frac{q+p}{pq-1}$$

2. Simplify each of the following:

(a)
$$\frac{3p+2}{2(p+1)^{3/2}}$$

(b)
$$\frac{2x^2 + 15}{(2x^2 + 5)^{4/3}}$$

(c)
$$\frac{r-6}{3(r-2)^{5/3}}$$

3. Practice with rules of exponents: Simplify, writing each expression without negative exponents:

(a)
$$\frac{36s}{r}$$

(b)
$$\frac{2y^3}{27x^8}$$

- 4. Practice with the inverse trigonometric functions (See Section 1.6)
 - (a) Find the exact value of each expression:

$$\cos^{-1}(-1) = \pi$$
 $\arctan(1) = \frac{\pi}{4}$ $\sin^{-1}(1/\sqrt{2}) = \frac{\pi}{4}$ $\tan^{-1}(1/\sqrt{3}) = \frac{\pi}{6}$

(b) Show (using a triangle) that $\cos(\sin^{-1}(x)) = \sqrt{1-x^2}$, then simplify $\tan(\cos^{-1}(x))$ using a similar technique.

SOLUTION: For the first one, use $\theta = \sin^{-1}(x)$, or $\sin(\theta) = x$ and draw the appropriate right triangle. The hypotenuse is 1, the legs are x and (by the Pythagorean Theorem) $\sqrt{1-x^2}$, so the cosine of the given angle is $\sqrt{1-x^2}/1$.

Similarly, the right triangle for the second one label θ , x and 1 so that $\cos(\theta) = x/1$, then the other leg is $\sqrt{1-x^2}$. Take the tangent of θ to get $\sqrt{1-x^2}/x$.

- 5. Solve for x:
 - (a) $2\cos(x) + 1 > 0$

SOLUTION: $\cos(x) = -1/2$ if $x = 2\pi/3$ or $x = 4\pi/3$ (on the unit circle). Between these angles, $\cos(x) > -1/2$, so: $0 < x < 2\pi/3$ or $4\pi/3 < x < 2\pi$.

(b) $(x-2)/(x^2-2x-3) \le 0$ Use a sign chart. The factors are zero where x=-1,2, and 3, which divides the number line into four parts. The ones in which the expression is negative are:

$$x < -1$$
 or $2 \le x < 3$

(c) $\sin(x) > \cos(x)$

SOLUTION: Using θ , and the unit circle, we look at points $x = \cos(\theta)$ and $y = \sin(\theta)$ where y > x. They are equal where the circle and the line y = x meet-At $\theta = \pi/4$ and $5\pi/4$, and y > x in between:

$$5\pi/4 < \theta < \pi/4$$