Group Exercise SOLUTIONS

- 1. Solve the equation for x:
 - (a) $\left| \frac{2x-1}{x+1} \right| = 3$ SOLUTION: From the definition of the absolute value, we have two equations to solve:

$$\frac{2x-1}{x+1} = 3 \qquad \frac{2x-1}{x+1} = -3$$

Solve these to get:

$$2x - 1 = 3x + 3$$
 $2x - 1 = -3x - 3$
 $x = -4$ $x = -2/5$

Be sure to check your answer. In this case, both solutions are valid since the denominator is not zero.

(b) |x+3| = |2x+1| SOLUTION: We actually have 4 equations, but they boil down to 2 equations:

$$LHS = RHS$$
 $LHS = -RHS$ $-LHS = RHS$ $-LHS = -RHS$

So we just solve the second two:

$$x+3=2x+1$$
 \Rightarrow $x=2$ $x+3=-2x-1$ \Rightarrow $3x=-4 \Rightarrow x=-\frac{4}{3}$

- 2. Solve the inequality x:
 - (a) $1 < 4 2x \le 5$

SOLUTION: We could break this up, but let's see what we get first.

$$-3 < -2x \le 1 \quad \Rightarrow \quad -\frac{1}{2} \le x < \frac{3}{2}$$

(b) $x^3 + 3x < 4x^2$

SOLUTION: Factor first

$$x^3 - 4x^2 + 3x < 0 \implies x(x^2 - 4x + 3) < 0 \implies x(x - 3)(x - 1) < 0$$

Now do the sign analysis:

Therefore, 0 < x < 1 or x > 3.

(c)
$$\frac{(x-1)(2-x)}{(x+1)} \ge 0$$

SOLUTION: This is ready for the sign analysis:

Therefore, x < -1 or 1 < x < 2.

- 3. Find an equation of the line that satisfies the given condition:
 - (a) Through (2, -3) perpendicular to 2x + 5y + 8 = 0SOLUTION: The slope of the given line is -2/5, so the slope of our line is 5/2: y + 3 = (5/2)(x - 1)
 - (b) Through (2, -3) parallel to the y-axis. SOLUTION: Parallel to the y-axis means that it is a vertical line (slope is undefined): x = 2
 - (c) Through (-3, -5) with a slope of 6: y + 5 = 6(x + 3)
 - (d) Perpendicular to the previous line, through (1,1): $y-1=\frac{-1}{6}(x-1)$