Solutions: Group Work, Section 3.4

Notice how problems 1-4 and 5-7 build up as go along:

1. $f(x)=\sin (3 x)$

SOLUTION: $f^{\prime}(x)=3 \cos (3 x)$
2. $g(x)=(\sin (3 x))^{3}=\sin ^{3}(3 x)$

SOLUTION: Note that $g(x)=(f(x))^{3}$, so we could write $g^{\prime}(x)=3(f(x))^{2} f^{\prime}(x)$, or more directly:

$$
g^{\prime}(x)=3 \sin ^{2}(3 x) \cdot 3 \cos (3 x)=9 \sin ^{2}(3 x) \cos (3 x)
$$

3. $h(x)=\sin ^{3}(3 x)+5 x$

SOLUTION: Again, we might see that $h(x)=g(x)+5 x$, so that $h^{\prime}(x)=g^{\prime}(x)+5$, or more directly:

$$
h^{\prime}(x)=9 \sin ^{2}(3 x) \cos (3 x)+5
$$

4. $j(x)=\left[\sin ^{3}(3 x)+5 x\right]^{5}$

SOLUTION: We could write $j(x)=(h(x))^{5}$, so $j^{\prime}=5(h(x))^{4} h^{\prime}(x)$, or:

$$
j^{\prime}(x)=5\left[\sin ^{3}(3 x)+5 x\right]^{4}\left(9 \sin ^{2}(3 x) \cos (3 x)+5\right)
$$

5. $k(x)=x+\frac{1}{x}=x+x^{-1}$

SOLUTION: $k^{\prime}(x)=1-x^{-2}$
6. $l(x)=\sqrt{x+x^{-1}}$

SOLUTION: We could write $l(x)=\sqrt{k(x)}$, so that $l^{\prime}(x)=\frac{1}{2}(k(x))^{-1 / 2} k^{\prime}(x)$, or more directly:

$$
l^{\prime}(x)=\frac{1}{2}\left(x+x^{-1}\right)^{-1 / 2}\left(1-x^{-2}\right)
$$

7. Similarly, $m(x)=\sqrt{x+x^{-1}}\left[\sin ^{3}(3 x)+5 x\right]^{5}$, or we could write $m(x)=l(x) \cdot j(x)$, so that by the product rule:

$$
m^{\prime}(x)=l^{\prime}(x) j(x)+l(x) j^{\prime}(x)
$$

Or, directly we could write the whole thing out, but it takes two lines!

$$
\begin{aligned}
& m^{\prime}(x)=\frac{1}{2}\left(x+x^{-1}\right)^{-1 / 2}\left(1-x^{-2}\right)\left[\sin ^{3}(3 x)+5 x\right]^{5}+ \\
& \sqrt{x+x^{-1}}\left(5\left[\sin ^{3}(3 x)+5 x\right]^{4}\left(9 \sin ^{2}(3 x) \cos (3 x)+5\right)\right)
\end{aligned}
$$

SOLUTIONS TO THE GRAPHICAL EXERCISES:

There are some approximations here for the derivative of f :

1. $h^{\prime}(1)=f^{\prime}(g(1)) g^{\prime}(1)=f^{\prime}(3) g^{\prime}(1) \approx \frac{3}{2} \cdot 3=\frac{9}{4}$
2. $h^{\prime}(0)=f^{\prime}(g(0)) g^{\prime}(0)=f^{\prime}(0) g^{\prime}(0) \approx-\frac{1}{2} \cdot 3=\frac{-3}{2}$
3. $h^{\prime}(2)=f^{\prime}(g(2)) g^{\prime}(2)=f^{\prime}(6) g^{\prime}(2)$ However, $g^{\prime}(2)$ does not exist (so $h^{\prime}(2)$ does not exist).
