Extra Practice: Trigonometry

- 1. Evaluate the following (exactly, without a calculator):
 - (a) $\sin(3\pi/4)$ (c) $\tan(2\pi/3)$ (e) $\csc(29\pi/6)$ (b) $\cos(-5\pi/4)$ (d) $\sec(7\pi/6)$ (f) $\tan(\pi/4)$
- 2. What is the amplitude, period and frequency for $f(x) = 1 + 2\cos(3x)$
- 3. What is the period of $f(x) = \tan(\pi/x)$? $f(x) = \cos(x/\pi)$?
- 4. Solve for x:
 - (a) $2\cos(x) + 1 = 0$ (b) $3\cot^2(x) = 1$ (c) $\sin(x) > \cos(x)$
- 5. Review the definition of the inverse trigonometric functions, then compute the following, if possible:
 - (a) $\sin^{-1}(0)$ (d) $\sin^{-1}(2)$ (g) $\tan^{-1}(1)$ (b) $\sin^{-1}(1)$ (e) $\tan^{-1}(-\sqrt{3})$ (h) $\sec^{-1}(-2)$ (c) $\arcsin(1/2)$ (f) $\tan^{-1}(0) = 0$ (i) $\sec^{-1}(2/\sqrt{3})$
- 6. Inverse trig identities: Simplify each expression.
 - (a) $\sin^{-1}(\sin(\pi))$ (c) $\tan^{-1}(\tan(\pi/4))$ (b) $\sin(\sin^{-1}(3/5)$ (d) $\tan^{-1}(\tan(\pi))$
- 7. Simplify the following expressions (using a triangle). Also think about the value(s) of x for which the simplification is valid.
 - (a) $\tan(\sin^{-1}(x))$ (d) $\tan(\sec^{-1}(x))$ (b) $\cos(\tan^{-1}(x))$ (e) $(*) \cos(2\sin^{-1}(x))$ (c) $\sec(\sin^{-1}(x))$ (f) $(**) \sin(2\tan^{-1}(x))$

Hints: (*) Use $\cos(2x) = \cos^2 x - \sin^2 x$, (**) Use $\sin(2x) = 2\sin(x)\cos(x)$