## Extra Practice Solutions: Trigonometry

1. For this first set of problems, you should be able to use our two triangles $(\pi / 6, \pi / 3, \pi / 2$ and $\pi / 4, \pi / 4, \pi / 2)$ and the unit circle.
Evaluate the following (exactly, without a calculator):
(a) $\sin (3 \pi / 4)$

SOLUTION: By the unit circle, $\sin (3 \pi / 4)=\sin (\pi / 4)$ and this can be read off of a standard triangle- The value is $1 / \sqrt{2}$ (or equivalently, $\sqrt{2} / 2$ ).
(b) $\cos (-5 \pi / 4)$

SOLUTION: In the unit circle, $-5 \pi / 4$ is in quadrant II, and is the same as $3 \pi / 4$. The cosine in this quadrant is negative, so the answer is:

$$
\cos (-5 \pi / 4)=-\cos (\pi / 4)=-\frac{1}{\sqrt{2}}
$$

(c) $\tan (2 \pi / 3)$

SOLUTION: In the unit circle, $2 \pi / 3$ is in the second quadrant. In this quadrant, the sine is positive and the cosine is negative, so the tangent is negative. Use this together with the 30-60-90 triangle:

$$
\tan (2 \pi / 3)=-\tan (\pi / 3)=-\frac{\sqrt{3}}{1}=-\sqrt{3}
$$

(d) $\sec (7 \pi / 6)$

SOLUTION: In the unit circle, we see that $7 \pi / 6$ is $\pi / 6$ into the third quadrant, so sine and cosine is negative. Use this, together with the 30-60-90 triangle:

$$
\sec (7 \pi / 6)=\frac{1}{\cos (7 \pi / 6)}=-\frac{1}{\cos (\pi / 6)}-\frac{2}{\sqrt{3}}
$$

(e) $\csc (29 \pi / 6)$

SOLUTION: The angle is $\pi / 6$ shy of $30 \pi / 6$, which is $5 \pi$. On the unit circle, this is equivalent to $\pi$. Overall, the angle is the same as $5 \pi / 6$ on the unit circle. Since this is in quadrant II, the sine is positive. This, together with the 30-60-90 triangle gives us:

$$
\csc (29 \pi / 6)=\frac{1}{\sin (29 \pi / 6)}=\frac{1}{\sin (\pi / 6)}=2
$$

(f) $\tan (\pi / 4)$

SOLUTION: At $\pi / 4$, sine is equal to cosine, to the tangent is 1 .
For the next two questions, we want to use the general ideas:

- For the "regular" trig functions, sine and cosine are periodic with period $2 \pi$. The tangent is periodic with period $\pi$.
- For $A \cos (\omega t)$ or $A \sin (\omega t)$, the amplitude is $A$, the period is $2 \pi / \omega$ and the frequency is the reciprocal of the period, or $\omega /(2 \pi)$. For the tangent, the period of $\tan (\omega t)$ would be $\pi / \omega$.
- Adding a constant would just shift the graph up/down, and would not change the amplitude or period.

2. What is the amplitude, period and frequency for $f(x)=1+2 \cos (3 x)$

SOLUTION: Amplitude is 2 , period is $2 \pi / 3$, frequency is $3 /(2 \pi)$.
3. What is the period of $f(x)=\tan (\pi x)$ ? $f(x)=\cos (x / \pi)$ ?

SOLUTION: The period of $\tan (\pi x)$ is 1 . The period of $\cos (x / \pi)$ is $2 \pi^{2}$
4. Solve for $x$ :
(a) $2 \cos (x)+1=0$

SOLUTION: First, $\cos (x)=-\frac{1}{2}$. On the unit circle, we can have angles either in quadrant II or quadrant III. By the 30-60-90 triangle, the solution to $\cos (x)=1 / 2$ is $x=\pi / 3$. Putting this in the second and third quadrants:

$$
x=\frac{2 \pi}{3}, \frac{4 \pi}{3} \text { or we can add any multiple of } 2 \pi
$$

(b) $3 \cot ^{2}(x)=1$

SOLUTION: First the algebra to get

$$
\cot (x)= \pm \frac{1}{\sqrt{3}} \Rightarrow \tan (x)= \pm \sqrt{3}
$$

The tangent function is positive in quadrants I and III, and negative in quadrants II and IV. Furthermore, using a 30-60-90 triangle, $x=\pi / 3$.
Therefore, the solutions to:

$$
\tan (x)=\sqrt{3} \quad \Rightarrow \quad x=\frac{\pi}{3}, \frac{4 \pi}{3}
$$

And

$$
\tan (x)=-\sqrt{3} \quad \Rightarrow \quad x=\frac{2 \pi}{3}, \frac{5 \pi}{3}
$$

And we can add any multiple of $\pi$ to these. In fact, with that simplification, we could say:

$$
\tan (x)=\sqrt{3} \quad \Rightarrow \quad x=\frac{\pi}{3}+k \pi \text { for } k=0, \pm 1, \pm 2, \ldots
$$

and

$$
\tan (x)=-\sqrt{3} \quad \Rightarrow \quad x=\frac{2 \pi}{3}+k \pi \text { for } k=0, \pm 1, \pm 2, \ldots
$$

(c) $\sin (x)>\cos (x)$

To solve this, we first look to see where $\sin (x)=\cos (x)$. On the unit circle, this is at $\pi / 4$ and $5 \pi / 4$. Also on the unit circle, this set of points correspond to where the $y$ coordinate is larger than the $x$ coordinate.
SOLUTION: $\frac{\pi}{4}<x<\frac{5 \pi}{4}$
5. For the following, recall that, to compute $\sin ^{-1}(x)$ means to find an angle $\theta$ so that $\sin (\theta)=x$. Normally, this would mean that there are an infinite number of possible angles (because the sine is not one-to-one); in order to make the inverse sine a function, we restricted the possible angles to be between $-\pi / 2$ and $\pi / 2$. Similarly, we defined the other inverse functions. Here we go:
(a) $\sin ^{-1}(0)$ SOLUTION: $0=\sin ^{-1}(0)$ either by unit circle or the graph of sine.
(b) $\sin ^{-1}(1)$ SOLUTION: $\pi / 2$ is the angle (the only one in $[-\pi / 2, \pi / 2]$ ).
(c) $\arcsin (1 / 2)$ SOLUTION: Use a 30-60-90 triangle to see that the angle is $\pi / 6$ (and this is the only angle).
(d) $\sin ^{-1}(2)$ SOLUTION: The domain of the inverse sine is $[-1,1]$, so we cannot compute this quantity (it does not exist).
(e) $\tan ^{-1}(-\sqrt{3})$

SOLUTION: The angles used in the inverse tangent are almost the same as the inverse sine (delete the endpoints). The tangent is negative in quadrant IV, and using the $30-60-90$ triangle we see that the angle is $-\pi / 3$.
(f) $\tan ^{-1}(0)=0$
(g) $\tan ^{-1}(1)=\pi / 4$
(h) $\sec ^{-1}(-2)$

SOLUTION: This is the angle whose secant is -2 , which means that the cosine of the angle is $-1 / 2$. Since we typically restrict the domain of the cosine to be $[0, \pi]$ (to get its inverse), we'll do the same with the secant, except for the secant there is a vertical asymptote at $\pi / 2($ since $\cos (\pi / 2)=0)$.
With that restriction, we need the angle to be in quadrant II. Using a 30-60-90 triangle, we see that the cosine is $1 / 2$ means the angle is $\pi / 3$. Putting this in quadrant II gives us our answer:

$$
\sec ^{-1}(-2)=\frac{2 \pi}{3}
$$

(i) $\sec ^{-1}(2 / \sqrt{3})$

SOLUTION: Similar to the previous reasoning, we look for an angle in $[0, p i / 2) \cup$ $(\pi / 2, \pi]$ for which $\cos (\theta)=\sqrt{3} 2$, which is $\pi / 6$.
6. The trick on these is that, while the inverse function undoes the original function:

$$
f^{-1}(f(x))=x \quad \Rightarrow \quad \sin \left(\sin ^{-1}(x)\right) \text { and } \sin ^{-1}(\sin (x))=x
$$

we have to use the restricted domain and range (so that the function is one-to-one). Same idea applies to the tangent and inverse tangent.
Here we go:
(a) $\sin ^{-1}(\sin (\pi))$

SOLUTION: Since $\pi$ is not in our restricted domain of $[-\pi / 2, \pi / 2]$, you should note that the answer is NOT $\pi$. Rather, $\sin (\pi)=0$ and $\sin ^{-1}(0)=0$, so the answer is 0 .
(b) $\sin \left(\sin ^{-1}(3 / 5)\right.$

SOLUTION: Since $3 / 5$ is in the restricted domain of the inverse sine (which is $[-1,1]$ ), the answer is $3 / 5$ (that is, we apply the rule $\sin \left(\sin ^{-1}(x)\right)=x$ ).
(c) $\tan ^{-1}(\tan (\pi / 4))$

SOLUTION: $\pi / 4$
(d) $\tan ^{-1}(\tan (\pi))=0$ by reasoning similar to the first problem.
7. Simplify the following expressions (using a triangle). Also think about the value(s) of $x$ for which the simplification is valid.
(a) $\tan \left(\sin ^{-1}(x)\right)$

SOLUTION: Let $\theta=\sin ^{-1}(x)$, or $\sin (\theta)=\frac{x}{1}$. Build a right triangle with this relationship (opposite $\theta$ has length $x$, hypotenuse has length 1 ). Then the length of the side adjacent is $\sqrt{1-x^{2}}$ by the Pythagorean Theorem. Finally, we compute the tan:

$$
\tan (\theta)=\tan \left(\sin ^{-1}(x)\right)=\frac{x}{\sqrt{1-x^{2}}}
$$

(b) $\cos \left(\tan ^{-1}(x)\right)$

SOLUTION: Let $\theta=\tan ^{-1}(x)$, or $\tan (\theta)=\frac{x}{1}$. Build a right triangle with this relationship (opposite $\theta$ has length $x$, adjacent has length 1 ). Then the length of the hypotenuse is $\sqrt{1+x^{2}}$ by the Pythagorean Theorem. Now compute the cosine:

$$
\cos (\theta)=\cos \left(\tan ^{-1}(x)\right)=\frac{1}{\sqrt{1+x^{2}}}
$$

(c) $\sec \left(\sin ^{-1}(x)\right)$

SOLUTION: This triangle is the same as in part (a)- From that:

$$
\cos (\theta)=\frac{1}{\sqrt{1-x^{2}}} \quad \Rightarrow \quad \sec \left(\sin ^{-1}(x)\right)=\sqrt{1-x^{2}}
$$

(d) $\tan \left(\sec ^{-1}(x)\right)$

SOLUTION: Make this triangle consistent with the relation:

$$
\cos (\theta)=\frac{1}{x}
$$

so that the length of the side adjacent is 1 , the length of the hypotenuse is $x$, which makes the length of the side opposite $\sqrt{x^{2}-1}$. Therefore,

$$
\tan \left(\sec ^{-1}(x)\right)=\sqrt{x^{2}-1}
$$

(e) $\cos \left(2 \sin ^{-1}(x)\right)$

SOLUTION: Using the hint, if we let $\theta=\sin ^{-1}(x)$, then we need to find $\cos ^{2}(\theta)$ and $\sin ^{2}(\theta)$. Build a triangle consistent with the relation:

$$
\sin (\theta)=\frac{x}{1}
$$

so that the length of the side adjacent to $\theta$ is $\sqrt{1-x^{2}}$. Then:

$$
\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)=\left(\sqrt{1-x^{2}}\right)^{2}-x^{2}=1-2 x^{2}
$$

(f) $\sin \left(2 \tan ^{-1}(x)\right)$

Using the hint, if $\theta=\tan ^{-1}(x)$, the we want to compute $\sin (\theta)$ and $\cos (\theta)$. The triangle has the same lengths as $(b)$, so: $\sin (\theta)=x / \sqrt{1-x^{2}}$ and $\cos (\theta)=1 / \sqrt{1-x^{2}}$ :

$$
\sin (2 \theta)=2 \sin (\theta) \cos (\theta)=\frac{2 x}{1-x^{2}}
$$

