
Sample Exam 2

See Sample Exam 1 for the lead-in information.

1. Short Answer:

(a) True or False?
x2 − 1

x− 1
= x+ 1

SOLUTION: False, unless we restrict both expressions to all x except x = 1- That is, the expression
on the left is not defined at x = 1, but the expression on the right is defined at x = 1.

(b) If f ′(2) exists, then lim
x→2

f(x) = f(2)

SOLUTION: (Typo: Should have started with ”True or False”) True- This says that if the derivative
of f exists at x = 2, then f is continuous at x = 2 (which is a theorem we know).

(c) If f(x) = (2− 3x)−1/2, find f(0), f ′(0) and f ′′(0).

SOLUTION: Just do the computation. f(0) = 2−1/2 = 1√
2
, and

f ′(x) = −1

2
(2− 3x)−3/2(−3) =

3

2(2− 3x)3/2
⇒ f ′(0) =

3

25/2

f ′′(x) = −9

4
(2− 3x)−5/2(−3) ⇒ f ′′(0) =

27

4 · 25/2
=

27

29/2

(d) Show that the x4 + 4x+ c = 0 has at most one solution in the interval [−1, 1].

SOLUTION: Let f(x) = x4 + 4x + c. Then f ′(x) = 4x3 + 4, and we note that f ′(x) = 0 only at
x = −1. We know, by the Mean Value Theorem (or more specifically, Rolle’s Theorem) that if
f(x) = 0 twice or more in (−1, 1], then f ′(x) would have to be zero at least once in this interval
(but it is not). Therefore, f can be zero at most once in (−1, 1]. We can also note that if f(x) = 0
at x = −1, then again f(x) cannot be zero again in the interval for the same reason (the derivative
would have to be zero somewhere in (−1, 1]).

NOTE: Our argument gets a little muddy if the derivative is zero at an endpoint, but basically
the same one works as if the derivative was not zero at an endpoint.

2. Find dy/dx (solve for it if necessary):

(a) y = xe g(
√
x) for some differentiable function g.

SOLUTION: This is a product rule together with a chain rule:

dy

dx
= e g(

√
x) + x · e g(

√
x)

(
g′(
√
x)

1

2
√
x

)
(b) y = x2 + 41/x + sin−1(3x+ 1) + sec(x2 + x)

SOLUTION:

dy

dx
= 2x+ 41/2 ln(4) · −1

x2
+

1√
1− (3x+ 1)2

· 3 + sec(x2 + x) tan(x2 + x)(2x+ 1)

(c) x tan(y) = y − 1

SOLUTION: Be sure to use the product rule on the expression to the left, and use implicit differ-
entiation:

tan(y) + x sec2(y)y′ = y′ ⇒ (x sec2(y)− 1)y′ = − tan(y) ⇒ y′ =
− tan(y)

x sec2(y)− 1

(d)
√
x+
√
y = 1

SOLUTION: Same type as the previous one- Use implicit differentiation:

1

2
√
x

+
1

2
√
y
y′ = 0 ⇒ y′ = −

√
y
√
x

= −
√
x

y

1



3. Find f ′(x) directly from the definition of the derivative (using limits and without l’Hospital’s rule):
f(x) = x−1

SOLUTION:

lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

(x+ h)−1 − (x)−1

h
= lim
h→0

1
x+h −

1
x

h
= lim
h→0

1

h

(
x− (x+ h)

x(x+ h)

)
Simplifying, we get −1/x2.

Grading Note: For partial credit, be sure you write down the definition accurately (with the limit!).

4. Find the limit if it exists. You may use any method (except for a numerical table).

(a) lim
x→∞

√
9x2 + x− 3x

SOLUTION: Multiply by the conjugate and we’ll introduce a fraction:

lim
x→∞

(
√

9x2 + x− 3x)

√
9x2 + x+ 3x√
9x2 + x+ 3x

= lim
x→∞

9x2 + x− 9x2√
9x2 + x+ 3x

= lim
x→∞

x/x

(
√

9x2 + x+ 3x)/x

= lim
x→∞

1√
9 + 1

x + 3
=

1

6

(b) lim
x→π−

sin(x)

1− cos(x)
SOLUTION: Try evaluating first, and we get 0/(1−−1) = 0/2 = 0.

(c) lim
x→0

x

tan−1(4x)
SOLUTION: Use l’Hospital’s Rule:

lim
x→0

x

tan−1(4x)
= lim
x→0

1
1

1+(4x)2 · 4
= lim
x→0

1 + 16x2

4
=

1

4

(d) lim
x→1

x1/(1−x)

SOLUTION: Rewrite this using the logarithm before using l’Hospital’s rule on the logarithm of the
function:

lim
x→1

1

1− x
ln(x) = lim

x→1

ln(x)

1− x
= lim
x→1

1/x

−1
= −1

Therefore, the overall limit is e−1.

5. (a) Find the general antiderivative F (x), if f(x) = 2x
√
x+

3 + x+
3
√
x4

x
SOLUTION: As in the homework, be sure to simplify before doing antidifferentiation:

f(x) = 2x3/2 +
3

x
+ 1 + x1/3 ⇒ F (x) = 2 · 2

5
x5/2 + 3 ln |x|+ x+

3

4
x4/3 + C

We could specify that this is for x > 0, then we could have a different constant if x < 0.

(b) A stone is dropped from the observation deck of the Space Needle which is 160 m above the ground1.

i. If the acceleration due to gravity is 9.8 m/s2, with what velocity does it strike the ground?
SOLUTION: As in class, the we’ll take the direction of the force due to gravity as negative, so
that:

a(t) = −9.8 ⇒ v(t) = −9.8t+ v0 ⇒ s(t) = −4.9t2 + v0t+ s0

Now, since the stone was dropped, v0 = 0 and we are also given that s0 = 160. That gives us
the height at time t, so we can find the time when the stone hits the ground:

−4.9t2 + 160 = 0 ⇒ t = 5.714

(We ignore the negative value of t). Substitute this into the velocity equation to get the velocity
when we hit the ground: −9.8(5.714) = −56 m/s. The negative sign means that the direction
of travel is downwards.

1Please don’t drop stones off the Space Needle!

2



ii. If the stone is thrown downward with a speed of 5 m/s, how long does it take to reach the
ground?
SOLUTION: In this case, the initial velocity is −5 (again, the negative sign is for “downwards”),
and our equation changes to:

−4.9t2 − 5t+ 160 = 0 ⇒ t ≈ −6.24, 5.227

We ignore the negative time, so that we conclude that it takes approximately 5.227 seconds to
reach the ground.

6. Exercise 55, Section 4.9, p. 349 (For the exam, I would give you the instructions/graph).

SOLUTION: The antiderivative is a series of line segments- Because the question asks for the continuous
one, and f(0) = −1, then your graph should be pretty close to the one below.

7. You’re standing with Elvis (the dog) on a straight shoreline, and you throw the stick in the water. Let us
label as “A” the point on the shore closest to the stick, and suppose that distance is 7 meters. Suppose
that the distance from you to the point A is 10 meters. Suppose that Elvis can run at 3 meters per
second, and can swim at 2 meters per second. How far along the shore should Elvis run before going in
to swim to the stick, if he wants to minimize the time it takes him to get to the stick?

SOLUTION: Recall that given distance d, rate r and time t, then d = rt, or t = d/r. If we let x be
distance from point A that Elvis should travel before entering the water, then 10−x is the distance that
Elvis runs on the beach, and

√
x2 + 49 is the distance Elvis has to swim. That gives the total time:

T (x) =

√
x2 + 49

2
+

10− x
3

0 ≤ x ≤ 10

We want to minimize T on the closed interval given, so first we find the critical points, then build a
table. The critical points are:

dT

dx
=

x

2
√
x2 + 49

− 1

3
= 0 ⇒ 3x = 2

√
x2 + 49 ⇒ x =

14√
5

(we discard the negative solution). Now build a table:

x 0 14/
√

5 10
T 6.833 5.94 6.10

Therefore, Elvis minimizes his overall time by first running 10 − 14/
√

5 ≈ 3.74 meters, then swimming
the remaining 9.39 meters for a total of 6.10 seconds.

8. A water tank in the shape of an inverted cone with a circular base has a base radius of 2 meters and a
height of 4 meters. If water is being pumped into the tank at a rate of 2 cubic meters per minute, find
the rate at which the water level is rising when the water is 3 meters deep. (V = 1

3πr
2h)

SOLUTION: If h is the height of the water, and r is the radius, the volume of water is a different than
what is given for the whole cone. The volume of water is the volume of the whole cone minus the
“empty” cone. That is, if h is the height of the water, then the volume is:

V =
1

3
π22 · 4− 1

3
πr2(4− h)
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From similar triangles, we get r = 1
2 (4− h), so our formula becomes:

V =
16

3
π − π

12
(4− h)3

Now, treat V, h as functions of time:

dV

dt
= − π

12
3(4− h)2(−1) =

π

4
(4− h)2

dh

dt

With dV/dt = 2 and h = 3, we get: dh/dt = 8/π.

9. Explain why the following is true (if it is): The function f(x) =
√

1 + 2x can be well approximated by
(1 + x)/3 if x is approximately 8.

TYPO: Should be (x+5)/3 with x ≈ 4. With this correction, then this is the equation of the tangent
line to f at x = 4:

f(4) =
√

1 + 8 = 3 f ′(4) =
1√

1 + 8
=

1

3
⇒ L(x) = 3 +

1

3
(x− 4) =

x+ 5

3

10. Find m and b so that f is continuous and differentiable:

f(x) =

{
x2 if x ≤ 2

mx+ b if x > 2

SOLUTION: We note that the derivative is:

f ′(x) =

{
2x if x < 2
m if x > 2

Therefore, if we make m = 4, the function will be differentiable at x = 2. However, in order to be
differentiable, the function needed to be continuous as well- Now that m = 4, we check to see if f is
continuous at x = 2 by going through the definition of continuity:

• Does f(2) exist? Yes. f(2) = 22 = 4.

• Does the limit exist at x = 2?

– From the left: lim
x→2−

f(x) = 22 = 4

– From the right: lim
x→2+

f(x) = 4(2) + b = 8 + b

Therefore, the limit exists (and is f(2)) if 8 + b = 4, or b = −4.

The function f should be:

f(x) =

{
x2 if x ≤ 2

4x− 4 if x > 2

You may note that 4x− 4 is the tangent line to x2 at x = 2 as well.

11. Find the absolute maximum and minimum of f(x) = |x2 − x| on the interval [0, 2].

SOLUTION: Use the closed interval method, so we’ll need the critical points. We re-write f in piecewise
form:

f(x) = |x2 − x| =
{

x2 − x if x ≤ 0 or x ≥ 1
−x2 + x if 0 < x < 1

(You can either use the graph of x2−x or a sign chart to separate the function) Now we can differentiate
as usual:

f ′(x) =

{
2x− 1 if x < 0 or x > 1
−2x+ 1 if 0 < x < 1

where we see that f ′(x) does not exist at x = 0 or x = 1. The derivative is zero at x = 1/2 as well:

x 0 1/2 1 2
f 0 1/4 0 2

Therefore, the absolute maximum is 2 (and occurs at x = 2), and the absolute minimum is zero (and
occurs at x = 0 and x = 1).
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