SOLUTIONS to the previous problems

1. $f(x)=\frac{x^{4}-x^{2}+2}{3 x^{4}+x^{2}+5}$

$$
\lim _{x \rightarrow \pm \infty} \frac{x^{4}-x^{2}+2}{3 x^{4}+x^{2}+5}=\lim _{x \rightarrow \pm \infty} \frac{1-\frac{1}{x^{2}}+\frac{2}{x^{4}}}{3+\frac{1}{x^{2}}+\frac{5}{x^{4}}}=\frac{1}{3}
$$

2. $f(x)=\frac{2 x^{5}-2 x^{3}+18}{x^{4}+x^{2}-x+2}$

SOLUTION: As x goes to infinity (positive or negative), this function will behave like $2 x$, and so it will also go to $\pm \infty$. Therefore, there are no horizontal asymptotes.
SIDE REMARK: Students in pre-calculus may recognize $y=2 x$ as a slant asymptote, but we won't discuss that here.
3. $f(x)=\frac{2 x^{5}-2 x^{3}+18}{x^{4}+3 x^{3}-x+2}-2 x$

SOLUTION: From the previous exercise, we might expect that this limit will probably be zero. However, we know that $\infty-\infty$ may not be zero, so we'll need to do more work to see what happens: Make this a single fraction, then divide numerator and denominator by x^{n} (for some n). First the algebra:

$$
\begin{aligned}
& \frac{2 x^{5}-2 x^{3}+18}{x^{4}+3 x^{3}-x+2}-2 x=\frac{2 x^{5}-2 x^{3}+18-(2 x)\left(x^{4}+3 x^{3}-x+2\right)}{x^{4}+3 x^{3}+2}= \\
& \frac{-6 x^{4}-2 x^{3}+2 x^{2}-4 x+18}{x^{4}+3 x^{3}+2}
\end{aligned}
$$

It is now easy to see that the limit is -6 !
4. $f(x)=\sin (x)$

SOLUTION: Since the sine oscillates, it never "settles down" to any single number (Therefore, there is no horizontal asymptote).
5. $f(x)=\frac{\cos (x)}{\ln (\ln (x))}$

SOLUTION: The numerator bounces around between ± 1, but the denominator increases without bound- The entire fraction then will go to zero as $x \rightarrow \infty$ (there is no horizontal asymptote at $-\infty$ since negative numbers [and zero] are not in the domain).

Find the limit:

1. $\lim _{x \rightarrow \infty} \tan ^{-1}\left(x^{2}+\sin (x)+e^{\sqrt{x}}\right)$

SOLUTION: We need two "facts": First, since $\tan (x)$ has vertical asymptotes at $x=$ $\pm \pi / 2$, the inverse tangent (or arctangent) has horizontal asymptotes at $y= \pm \pi / 2$.
Secondly, as $x \rightarrow \infty$, the function $x^{2}+\sin (x)+\mathrm{e}^{\sqrt{x}}$ increases without bound.
Therefore, as the input to the inverse tangent increases without bound, the function values get closer and closer to $y=\pi / 2$.
2. $\lim _{x \rightarrow \infty}\left(\mathrm{e}^{-x}+2 \cos (3 x)\right)$

SOLUTION: The limit does not exist. The first function, e^{-x} goes to zero, but $2 \cos (3 x)$ oscillates between ± 2 and never settles down to a single value.
3. $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+x+1}+x\right)$

SOLUTION: This is an " $\infty-\infty$ " kind of problem.

$$
\lim _{x \rightarrow-\infty} \sqrt{x^{2}+x+1}+x \cdot \frac{\sqrt{x^{2}+x+1}-x}{\sqrt{x^{2}+x+1}-x}=\lim _{x \rightarrow-\infty} \frac{x^{2}+x+1-x^{2}}{\sqrt{x^{2}+x+1}-x}
$$

Divide numerator and denominator by x (or $x=-\sqrt{x^{2}}$, as needed in the denominator):

$$
\lim _{x \rightarrow-\infty} \frac{x+1}{\sqrt{x^{2}+x+1}-x}=\lim _{x \rightarrow-\infty} \frac{1+\frac{1}{x}}{-\sqrt{1+\frac{1}{x}+\frac{1}{x^{2}}}-1}=-\frac{1}{2}
$$

