### 4.9 Extra Practice

1. Given the graph of $f^{\prime}(x)$ below, sketch a graph of $f(x)$ (so that $f(0)=0$ ).

2. A car is traveling at $100 \mathrm{~km} / \mathrm{h}$ when the driver sees an accident 80 m (or 0.08 km ) ahead and slams on the brakes. What constant deceleration is required to stop the car within the 80 m ?
3. Given the graph of $f^{\prime}(x)$ below, sketch a graph of $f(x)$ (so that $f(0)=0$ ).


Extra: See if you can come up with a formula for the general antiderivative!

## Solutions

For the graphical problems, be sure that you can identify intervals on which $f$ is increasing/decreasing, and intervals on which $f$ is concave up/concave down.

1. You should check for general shape; you can ignore the numerical values along the $y$-axis.

2. SOLUTION: We have to decide on the setup- Let's say that our current position is 0 at time 0 , which would make $v(0)=100$ (that makes the direction of travel positive). If we define the acceleration to be $k \mathrm{~km} / \mathrm{h}^{2}$, then

$$
a(t)=k \quad \Rightarrow v(t)=k t+C \quad \Rightarrow v(t)=k t+100 \quad \Rightarrow \quad s(t)=\frac{1}{2} k t^{2}+100 t
$$

Now we need the time it takes for the velocity to reach 0 :

$$
0=k t+100 \Rightarrow t=-\frac{100}{k}
$$

And if we substitute that into $s(t)$, we want the result to be less than or equal to 0.08 km:

$$
0.08=\frac{1}{2} k\left(-\frac{100}{k}\right)^{2}+100\left(-\frac{100}{k}\right)=-\frac{5000}{k}
$$

Therefore, $k \approx-62,500 \mathrm{~km} / \mathrm{h}^{2}$ (which is approx. $-4.82 \mathrm{~m} / \mathrm{s}^{2}$ )
3. You should have two line segments and a half of parabola. Notice that the two line segments (for $x<1$, and $1<x<2$ ) did not have to touch, but it is common when we have a choice to make the antiderivative continuous.


FYI- The formula for the general antiderivative:
$f(x)=\left\{\begin{aligned} 2 x+C_{1} & \text { if } x<1 \\ -x+C_{2} & \text { if } 1<x<2 \\ \frac{1}{2}(x-2)^{2}+C_{3} & \text { if } x>2\end{aligned}\right.$

