Intuitive Conclusions: Fractions and Limits

- If you have a fraction, and the numerator goes to zero and the denominator goes to any other constant, then overall, the fraction

Intuitive Conclusions: Fractions and Limits

- If you have a fraction, and the numerator goes to zero and the denominator goes to any other constant, then overall, the fraction goes to zero.

Intuitive Conclusions: Fractions and Limits

- If you have a fraction, and the numerator goes to zero and the denominator goes to any other constant, then overall, the fraction goes to zero.
- If you have a fraction, and the numerator goes to a non-zero constant, but the denominator goes to zero, overall, the fraction does what?

Intuitive Conclusions: Fractions and Limits

- If you have a fraction, and the numerator goes to zero and the denominator goes to any other constant, then overall, the fraction goes to zero.
- If you have a fraction, and the numerator goes to a non-zero constant, but the denominator goes to zero, overall, the fraction does what? Answer: The fraction goes to $\pm \infty$ (which can be determined), or you can say "does not exist".

Intuitive Conclusions: Fractions and Limits

- If you have a fraction, and the numerator goes to zero and the denominator goes to any other constant, then overall, the fraction goes to zero.
- If you have a fraction, and the numerator goes to a non-zero constant, but the denominator goes to zero, overall, the fraction does what? Answer: The fraction goes to $\pm \infty$ (which can be determined), or you can say "does not exist".
- If you have a fraction, and both numerator and denominator go to zero,

Intuitive Conclusions: Fractions and Limits

- If you have a fraction, and the numerator goes to zero and the denominator goes to any other constant, then overall, the fraction goes to zero.
- If you have a fraction, and the numerator goes to a non-zero constant, but the denominator goes to zero, overall, the fraction does what? Answer: The fraction goes to $\pm \infty$ (which can be determined), or you can say "does not exist".
- If you have a fraction, and both numerator and denominator go to zero, we cannot conclude anything.
- If you have a fraction, and the numerator goes to a constant, but the denominator goes to infinity,

Intuitive Conclusions: Fractions and Limits

- If you have a fraction, and the numerator goes to zero and the denominator goes to any other constant, then overall, the fraction goes to zero.
- If you have a fraction, and the numerator goes to a non-zero constant, but the denominator goes to zero, overall, the fraction does what? Answer: The fraction goes to $\pm \infty$ (which can be determined), or you can say "does not exist".
- If you have a fraction, and both numerator and denominator go to zero, we cannot conclude anything.
- If you have a fraction, and the numerator goes to a constant, but the denominator goes to infinity, then overall the fraction goes to zero.

Algebraically Determining Limits- Limit Laws

The limit laws state that, if

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=H
$$

then

- $\lim _{x \rightarrow a} f(x) \pm g(x)=$

Algebraically Determining Limits- Limit Laws

The limit laws state that, if

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=H
$$

then

- $\lim _{x \rightarrow a} f(x) \pm g(x)=L \pm H$
- $\lim _{x \rightarrow a} f(x) g(x)=$

Algebraically Determining Limits- Limit Laws

The limit laws state that, if

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=H
$$

then

- $\lim _{x \rightarrow a} f(x) \pm g(x)=L \pm H$
- $\lim _{x \rightarrow a} f(x) g(x)=L H$
- $\lim _{x \rightarrow a} f(x) / g(x)=$

Algebraically Determining Limits- Limit Laws

The limit laws state that, if

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=H
$$

then

- $\lim _{x \rightarrow a} f(x) \pm g(x)=L \pm H$
- $\lim _{x \rightarrow a} f(x) g(x)=L H$
- $\lim _{x \rightarrow a} f(x) / g(x)=L / H$

Algebraically Determining Limits- Limit Laws

The limit laws state that, if

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=H
$$

then

- $\lim _{x \rightarrow a} f(x) \pm g(x)=L \pm H$
- $\lim _{x \rightarrow a} f(x) g(x)=L H$
- $\lim _{x \rightarrow a} f(x) / g(x)=L / H$ provided $H \neq 0$.

Algebraically Determining Limits- Limit Laws

The limit laws state that, if

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=H
$$

then

- $\lim _{x \rightarrow a} f(x) \pm g(x)=L \pm H$
- $\lim _{x \rightarrow a} f(x) g(x)=L H$
- $\lim _{x \rightarrow a} f(x) / g(x)=L / H$ provided $H \neq 0$.

By these laws, we may conclude that, if $p(x)$ is any polynomial or rational function whose domain includes $x=a$, then

Algebraically Determining Limits- Limit Laws

The limit laws state that, if

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=H
$$

then

- $\lim _{x \rightarrow a} f(x) \pm g(x)=L \pm H$
- $\lim _{x \rightarrow a} f(x) g(x)=L H$
- $\lim _{x \rightarrow a} f(x) / g(x)=L / H$ provided $H \neq 0$.

By these laws, we may conclude that, if $p(x)$ is any polynomial or rational function whose domain includes $x=a$, then

$$
\lim _{x \rightarrow a} p(x)=p(a)
$$

Examples

$$
\lim _{x \rightarrow 3} \frac{x^{2}-1}{x+1}
$$

Examples

$$
\lim _{x \rightarrow 3} \frac{x^{2}-1}{x+1}
$$

Numerator is poly, goes to $3^{2}-1=8$.

Examples

$$
\lim _{x \rightarrow 3} \frac{x^{2}-1}{x+1}
$$

Numerator is poly, goes to $3^{2}-1=8$. Denom is poly, goes to $3+1=4$.

Examples

$$
\lim _{x \rightarrow 3} \frac{x^{2}-1}{x+1}
$$

Numerator is poly, goes to $3^{2}-1=8$. Denom is poly, goes to $3+1=4$. Therefore:

$$
\lim _{x \rightarrow 3} \frac{x^{2}-1}{x+1}=
$$

Examples

$$
\lim _{x \rightarrow 3} \frac{x^{2}-1}{x+1}
$$

Numerator is poly, goes to $3^{2}-1=8$. Denom is poly, goes to $3+1=4$.
Therefore:

$$
\lim _{x \rightarrow 3} \frac{x^{2}-1}{x+1}=\frac{3^{2}-1}{3+1}=\frac{8}{4}=2
$$

$$
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}
$$

$$
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}
$$

Limit laws do not apply- $0 / 0$ is indeterminant.

$$
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}
$$

Limit laws do not apply- $0 / 0$ is indeterminant.
Let's try some algebra first!

$$
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}
$$

Limit laws do not apply- $0 / 0$ is indeterminant.
Let's try some algebra first!

$$
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=
$$

$$
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}
$$

Limit laws do not apply- $0 / 0$ is indeterminant.
Let's try some algebra first!

$$
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=\lim _{x \rightarrow-1} \frac{(x+1)(x-1)}{(x+1)}=
$$

$$
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}
$$

Limit laws do not apply- $0 / 0$ is indeterminant.
Let's try some algebra first!

$$
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=\lim _{x \rightarrow-1} \frac{(x+1)(x-1)}{(x+1)}=\lim _{x \rightarrow-1}(x-1)=-2
$$

Algebraic Technique: Simplify and Cancel if possible!

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}
$$

Algebraic Technique: Simplify and Cancel if possible!

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}
$$

Antother 0/0 form- Algebra first!

Algebraic Technique: Simplify and Cancel if possible!

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}
$$

Antother 0/0 form- Algebra first!

$$
\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=
$$

Algebraic Technique: Simplify and Cancel if possible!

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}
$$

Antother 0/0 form- Algebra first!

$$
\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=
$$

Algebraic Technique: Simplify and Cancel if possible!

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}
$$

Antother 0/0 form- Algebra first!

$$
\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(6+h)}{h}=
$$

Algebraic Technique: Simplify and Cancel if possible!

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}
$$

Antother 0/0 form- Algebra first!

$$
\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(6+h)}{h}=\lim _{h \rightarrow 0} 6+h=6
$$

Algebraic Technique: "Rationalize"

$$
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}
$$

Algebraic Technique: "Rationalize"

$$
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}
$$

Recall that $(A+B)(A-B)=A^{2}-B^{2}$

Algebraic Technique: "Rationalize"

$$
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}
$$

Recall that $(A+B)(A-B)=A^{2}-B^{2}$

$$
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}} \cdot \frac{\sqrt{t^{2}+9}+3}{\sqrt{t^{2}+9}+3}=
$$

Algebraic Technique: "Rationalize"

$$
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}
$$

Recall that $(A+B)(A-B)=A^{2}-B^{2}$

$$
\begin{gathered}
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}} \cdot \frac{\sqrt{t^{2}+9}+3}{\sqrt{t^{2}+9}+3}= \\
\lim _{t \rightarrow 0} \frac{\left(t^{2}+9\right)-9}{t^{2}\left(\sqrt{t^{2}+9}+3\right)}=\lim _{t \rightarrow 0} \frac{1}{\sqrt{t^{2}+9}+3}=\frac{1}{6}
\end{gathered}
$$

Piecewise defined functions

$$
\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

Piecewise defined functions

$$
\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

First, recall:

$$
|x|=
$$

Piecewise defined functions

$$
\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

First, recall:

$$
|x|=\left\{\begin{aligned}
-x & \text { if } x<0 \\
x & \text { if } x \geq 0
\end{aligned}\right.
$$

Piecewise defined functions

$$
\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

First, recall:

$$
|x|=\left\{\begin{aligned}
-x & \text { if } x<0 \\
x & \text { if } x \geq 0
\end{aligned}\right.
$$

Therefore, if $x<0$, then $|x| / x=$

Piecewise defined functions

$$
\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

First, recall:

$$
|x|=\left\{\begin{aligned}
-x & \text { if } x<0 \\
x & \text { if } x \geq 0
\end{aligned}\right.
$$

Therefore, if $x<0$, then $|x| / x=-x / x=-1$.

Piecewise defined functions

$$
\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

First, recall:

$$
|x|=\left\{\begin{aligned}
-x & \text { if } x<0 \\
x & \text { if } x \geq 0
\end{aligned}\right.
$$

Therefore, if $x<0$, then $|x| / x=-x / x=-1$. If $x \geq 0$, then $|x| / x=$

Piecewise defined functions

$$
\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

First, recall:

$$
|x|=\left\{\begin{aligned}
-x & \text { if } x<0 \\
x & \text { if } x \geq 0
\end{aligned}\right.
$$

Therefore, if $x<0$, then $|x| / x=-x / x=-1$. If $x \geq 0$, then $|x| / x=x / x=1$, and

$$
\frac{|x|}{x}=
$$

Piecewise defined functions

$$
\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

First, recall:

$$
|x|=\left\{\begin{aligned}
-x & \text { if } x<0 \\
x & \text { if } x \geq 0
\end{aligned}\right.
$$

Therefore, if $x<0$, then $|x| / x=-x / x=-1$. If $x \geq 0$, then $|x| / x=x / x=1$, and

$$
\frac{|x|}{x}=\left\{\begin{aligned}
-1 & \text { if } x<0 \\
1 & \text { if } x \geq 0
\end{aligned}\right.
$$

Therefore, the limit at $x=0$

Piecewise defined functions

$$
\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

First, recall:

$$
|x|=\left\{\begin{aligned}
-x & \text { if } x<0 \\
x & \text { if } x \geq 0
\end{aligned}\right.
$$

Therefore, if $x<0$, then $|x| / x=-x / x=-1$. If $x \geq 0$, then $|x| / x=x / x=1$, and

$$
\frac{|x|}{x}=\left\{\begin{aligned}
-1 & \text { if } x<0 \\
1 & \text { if } x \geq 0
\end{aligned}\right.
$$

Therefore, the limit at $x=0$ DNE.

Squeeze theorem: On the board.

