GROUP WORK 1, SECTION 3.4 Unbroken Chain

For each of the following functions of x, write the equation for the derivative function. This will go a lot more smoothly if you remember the Sum, Product, Quotient, and Chain Rules... especially the Chain Rule! Please do us both a favor and don't simplify the answers.

1.
$$f(x) = \sin 3x$$
 $f'(x) =$

2.
$$g(x) = (\sin 3x)^3$$
 $g'(x) =$

3.
$$h(x) = (\sin 3x)^3 + 5x$$
 $h'(x) =$

4.
$$j(x) = [(\sin 3x)^3 + 5x]^5$$
 $j'(x) =$

5.
$$k(x) = x + \frac{1}{x}$$
 $k'(x) =$

6.
$$l(x) = \sqrt{x + \frac{1}{x}}$$
 $l'(x) =$

7.
$$m(x) = \left(\sqrt{x + \frac{1}{x}}\right) \left[(\sin 3x)^3 + 5x\right]^5$$
 $m'(x) =$

GROUP WORK 2, SECTION 3.4

Chain Rule Without Formulas

Consider the functions f and g given by the following graph:

I. Compute h'(1).

2. Compute *h*′ (0).

3. Does h'(2) exist?