Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

x	$F(x)$
0.9	1.0345
0.99	1.1723
0.999	1.1867
0.9999	1.18823

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

x	$F(x)$
0.9	1.0345
0.99	1.1723
0.999	1.1867
0.9999	1.18823

What is the limit of $F(x)$ as $x \rightarrow 1$ "from the right"?

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

x	$F(x)$
0.9	1.0345
0.99	1.1723
0.999	1.1867
0.9999	1.18823

What is the limit of $F(x)$ as $x \rightarrow 1$ "from the right"? $\lim _{x \rightarrow 1^{+}} F(x) \approx$

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

x	$F(x)$
0.9	1.0345
0.99	1.1723
0.999	1.1867
0.9999	1.18823

What is the limit of $F(x)$ as $x \rightarrow 1$ "from the right"? $\lim _{x \rightarrow 1^{+}} F(x) \approx 1.188$

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

x	$F(x)$
0.9	1.0345
0.99	1.1723
0.999	1.1867
0.9999	1.18823

What is the limit of $F(x)$ as $x \rightarrow 1$ "from the right"? $\lim _{x \rightarrow 1^{+}} F(x) \approx 1.188$
What is the limit of $F(x)$ as $x \rightarrow 1$ "from the left"?

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

x	$F(x)$
0.9	1.0345
0.99	1.1723
0.999	1.1867
0.9999	1.18823

What is the limit of $F(x)$ as $x \rightarrow 1$ "from the right"? $\lim _{x \rightarrow 1^{+}} F(x) \approx 1.188$
What is the limit of $F(x)$ as $x \rightarrow 1$ "from the left"? $\lim _{x \rightarrow 1^{-}} F(x) \approx$

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

x	$F(x)$
0.9	1.0345
0.99	1.1723
0.999	1.1867
0.9999	1.18823

What is the limit of $F(x)$ as $x \rightarrow 1$ "from the right"? $\lim _{x \rightarrow 1^{+}} F(x) \approx 1.188$
What is the limit of $F(x)$ as $x \rightarrow 1$ "from the left"? $\lim _{x \rightarrow 1^{-}} F(x) \approx 1.188$

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

x	$F(x)$
0.9	1.0345
0.99	1.1723
0.999	1.1867
0.9999	1.18823

What is the limit of $F(x)$ as $x \rightarrow 1$ "from the right"? $\lim _{x \rightarrow 1^{+}} F(x) \approx 1.188$
What is the limit of $F(x)$ as $x \rightarrow 1$ "from the left"? $\lim _{x \rightarrow 1^{-}} F(x) \approx 1.188$ Overall, $\lim _{x \rightarrow 1} f(x) \approx 1.188$.

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

x	$F(x)$
0.9	1.0345
0.99	1.0034
0.999	1.0003
0.9999	1.0000

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

x	$F(x)$
0.9	1.0345
0.99	1.0034
0.999	1.0003
0.9999	1.0000

What is the limit of $F(x)$ as $x \rightarrow 1$ "from the right"?

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

x	$F(x)$
0.9	1.0345
0.99	1.0034
0.999	1.0003
0.9999	1.0000

What is the limit of $F(x)$ as $x \rightarrow 1$ "from the right"? $\lim _{x \rightarrow 1^{+}} F(x) \approx$

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

x	$F(x)$
0.9	1.0345
0.99	1.0034
0.999	1.0003
0.9999	1.0000

What is the limit of $F(x)$ as $x \rightarrow 1$ "from the right"? $\lim _{x \rightarrow 1^{+}} F(x) \approx 1.188$

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$		
1.1	1.3577		x
1.01	1.2046	0.9	1.0345
1.001	1.1900	0.99	1.0034
1.0001	1.1885	0.999	1.0003
1.00001	1.1884		0.9999

What is the limit of $F(x)$ as $x \rightarrow 1$ "from the right"? $\lim _{x \rightarrow 1^{+}} F(x) \approx 1.188$
What is the limit of $F(x)$ as $x \rightarrow 1$ "from the left"?

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

x	$F(x)$
0.9	1.0345
0.99	1.0034
0.999	1.0003
0.9999	1.0000

What is the limit of $F(x)$ as $x \rightarrow 1$ "from the right"? $\lim _{x \rightarrow 1^{+}} F(x) \approx 1.188$
What is the limit of $F(x)$ as $x \rightarrow 1$ "from the left"? $\lim _{x \rightarrow 1^{-}} F(x) \approx$

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$
1.1	1.3577
1.01	1.2046
1.001	1.1900
1.0001	1.1885
1.00001	1.1884

x	$F(x)$
0.9	1.0345
0.99	1.0034
0.999	1.0003
0.9999	1.0000

What is the limit of $F(x)$ as $x \rightarrow 1$ "from the right"? $\lim _{x \rightarrow 1^{+}} F(x) \approx 1.188$
What is the limit of $F(x)$ as $x \rightarrow 1$ "from the left"? $\lim _{x \rightarrow 1^{-}} F(x) \approx 1$

Intro to Limits

Suppose we have the sequence of values shown below:

x	$F(x)$		
1.1	1.3577		x
1.01	1.2046	0.9	1.0345
1.001	1.1900	0.99	1.0034
1.0001	1.1885		0.999
1.00001	1.1884		1.0003

What is the limit of $F(x)$ as $x \rightarrow 1$ "from the right" ? $\lim _{x \rightarrow 1^{+}} F(x) \approx 1.188$
What is the limit of $F(x)$ as $x \rightarrow 1$ "from the left"? $\lim _{x \rightarrow 1^{-}} F(x) \approx 1$ Overall, $\lim _{x \rightarrow 1} f(x)$ does not exist.

Key Definition: The Limit

Suppose $f(x)$ is defined for all x near $x=a$, except perhaps at $x=a$. Then, if we can make the values of $f(x)$ arbitrarily close to L by taking x sufficiently close to a, but not equal to a, then we say that

$$
\lim _{x \rightarrow a} f(x)=L
$$

To compute the limit, L

To compute the limit, L

- Numerical limit (use a table). Not on exams/quizzes.

To compute the limit, L

- Numerical limit (use a table). Not on exams/quizzes.
- Graphical limit. Using the graph of f, determine if the limit exists.

To compute the limit, L

- Numerical limit (use a table). Not on exams/quizzes.
- Graphical limit. Using the graph of f, determine if the limit exists.
- Algebraic limit (most of the time)

Graphical Determination

Template Example

For $y=\frac{1}{x}$, find the limit as $x \rightarrow 0$, and as x gets really large.

- $1 /(1 / 10)=10$

Template Example

For $y=\frac{1}{x}$, find the limit as $x \rightarrow 0$, and as x gets really large.

- $1 /(1 / 10)=10$ and $1 /(1 / 100)=100$

Template Example

For $y=\frac{1}{x}$, find the limit as $x \rightarrow 0$, and as x gets really large.

- $1 /(1 / 10)=10$ and $1 /(1 / 100)=100$ and $1 /(1 / 1000)=1000$
"As $x \rightarrow 0^{+}$, the y-values grow arbitrarily large"

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
$$

- $1 / 10$

Template Example

For $y=\frac{1}{x}$, find the limit as $x \rightarrow 0$, and as x gets really large.

- $1 /(1 / 10)=10$ and $1 /(1 / 100)=100$ and $1 /(1 / 1000)=1000$
"As $x \rightarrow 0^{+}$, the y-values grow arbitrarily large"

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
$$

- $1 / 10$ and $1 / 100$ and $1 / 1000$, etc:
"As $x \rightarrow \infty$, the y-values go to zero"

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

A Simple Example: 0/0

- Find $\lim _{x \rightarrow 0} \frac{x^{2}}{x}$

SOLUTION: Since $x^{2} / x=x$, then we can simplify first:

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{x}=\lim _{x \rightarrow 0} x=0
$$

- Find $\lim _{x \rightarrow 0} \frac{x}{x^{2}}$

SOLUTION: Since $x^{2} / x=x$, then we can simplify first:

$$
\lim _{x \rightarrow 0} \frac{x}{x^{2}}=\lim _{x \rightarrow 0} \frac{1}{x} \Rightarrow D N E
$$

Intuitive Conclusion: Fractions and Limits

- If you have a fraction, and the numerator goes to zero and the denominator goes to any other constant, then overall,

Intuitive Conclusion: Fractions and Limits

- If you have a fraction, and the numerator goes to zero and the denominator goes to any other constant, then overall, the fraction goes to zero.

Intuitive Conclusion: Fractions and Limits

- If you have a fraction, and the numerator goes to zero and the denominator goes to any other constant, then overall, the fraction goes to zero.
- If you have a fraction, and the numerator goes to a non-zero constant, but the denominator goes to zero, overall, the fraction does what?

Intuitive Conclusion: Fractions and Limits

- If you have a fraction, and the numerator goes to zero and the denominator goes to any other constant, then overall, the fraction goes to zero.
- If you have a fraction, and the numerator goes to a non-zero constant, but the denominator goes to zero, overall, the fraction does what? Answer: The fraction goes to $\pm \infty$ (which can be determined), or you can say "does not exist".

Intuitive Conclusion: Fractions and Limits

- If you have a fraction, and the numerator goes to zero and the denominator goes to any other constant, then overall, the fraction goes to zero.
- If you have a fraction, and the numerator goes to a non-zero constant, but the denominator goes to zero, overall, the fraction does what? Answer: The fraction goes to $\pm \infty$ (which can be determined), or you can say "does not exist".
- If you have a fraction, and both numerator and denominator go to zero,

Intuitive Conclusion: Fractions and Limits

- If you have a fraction, and the numerator goes to zero and the denominator goes to any other constant, then overall, the fraction goes to zero.
- If you have a fraction, and the numerator goes to a non-zero constant, but the denominator goes to zero, overall, the fraction does what? Answer: The fraction goes to $\pm \infty$ (which can be determined), or you can say "does not exist".
- If you have a fraction, and both numerator and denominator go to zero, we cannot conclude anything.
- If you have a fraction, and the numerator goes to a constant, but the denominator goes to infinity,

Intuitive Conclusion: Fractions and Limits

- If you have a fraction, and the numerator goes to zero and the denominator goes to any other constant, then overall, the fraction goes to zero.
- If you have a fraction, and the numerator goes to a non-zero constant, but the denominator goes to zero, overall, the fraction does what? Answer: The fraction goes to $\pm \infty$ (which can be determined), or you can say "does not exist".
- If you have a fraction, and both numerator and denominator go to zero, we cannot conclude anything.
- If you have a fraction, and the numerator goes to a constant, but the denominator goes to infinity, then overall the fraction goes to zero.

An Odd Case

Consider $y=\sin (\pi / x)$ (Graph below). Does the limit exist as $x \rightarrow 0$?

Definition: Vertical Asymptote

The line $x=a$ is said to be a vertical asymptote for $f(x)$ if, as x approaches a from right or the left, the y-values go to $\pm \infty$:

$$
\lim _{x \rightarrow a^{+/-}} f(x)= \pm \infty
$$

(Only one of these needs to be true).

Sketch

Sketch an example of the graph of a function f that would satisfy (all) the following conditions:

$$
\begin{gathered}
\lim _{x \rightarrow 0} f(x)=1 \quad \lim _{x \rightarrow 3^{-}} f(x)=-2 \quad \lim _{x \rightarrow 3^{+}} f(x)=2 \\
f(0)=-1 \quad f(3)=1
\end{gathered}
$$

Algebraically Determining Limits- Limit Laws

The limit laws state that:

- The limit of a sum (or difference) is the sum (or difference) of the limits.
- The limit of a product is the product of the limits.
- The limit of a quotient is the quotient of the limits (provided the denominator does not go to zero!).
By these laws, we may conclude that, if $p(x)$ is any polynomial or rational function whose domain includes $x=a$, then

$$
\lim _{x \rightarrow a} p(x)=p(a)
$$

Examples

$$
\lim _{x \rightarrow 3} \frac{x^{2}-1}{x+1}=
$$

Examples

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{x^{2}-1}{x+1}=\frac{3^{2}-1}{3+1}=\frac{8}{4}=2 \\
& \lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=
\end{aligned}
$$

Examples

$$
\begin{array}{r}
\lim _{x \rightarrow 3} \frac{x^{2}-1}{x+1}=\frac{3^{2}-1}{3+1}=\frac{8}{4}=2 \\
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=\lim _{x \rightarrow-1} \frac{(x+1)(x-1)}{(x+1)}=
\end{array}
$$

Examples

$$
\begin{gathered}
\lim _{x \rightarrow 3} \frac{x^{2}-1}{x+1}=\frac{3^{2}-1}{3+1}=\frac{8}{4}=2 \\
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=\lim _{x \rightarrow-1} \frac{(x+1)(x-1)}{(x+1)}=\lim _{x \rightarrow-1}(x-1)=-2
\end{gathered}
$$

Algebraic Technique: Simplify and Cancel if possible!

(Example 5, 2.3) Find $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}$

Algebraic Technique: Simplify and Cancel if possible!

(Example 5, 2.3) Find $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}$
$\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=$

Algebraic Technique: Simplify and Cancel if possible!

(Example 5, 2.3) Find $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}$

$$
\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=
$$

Algebraic Technique: Simplify and Cancel if possible!

(Example 5, 2.3) Find $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}$

$$
\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(6+h)}{h}=
$$

Algebraic Technique: Simplify and Cancel if possible!

(Example 5, 2.3) Find $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}$

$$
\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(6+h)}{h}=\lim _{h \rightarrow 0} 6+h=6
$$

Algebraic Technique: "Rationalize"

(Example 5, 2.3) Find $\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}$

Algebraic Technique: "Rationalize"

(Example 5, 2.3) Find $\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}$

$$
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}} \cdot \frac{\sqrt{t^{2}+9}+3}{\sqrt{t^{2}+9}+3}=
$$

Algebraic Technique: "Rationalize"

(Example 5, 2.3) Find $\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}$

$$
\begin{gathered}
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}} \cdot \frac{\sqrt{t^{2}+9}+3}{\sqrt{t^{2}+9}+3}= \\
\lim _{t \rightarrow 0} \frac{\left(t^{2}+9\right)-9}{t^{2}\left(\sqrt{t^{2}+9}+3\right)}=\lim _{t \rightarrow 0} \frac{1}{\sqrt{t^{2}+9}+3}=\frac{1}{6}
\end{gathered}
$$

