I certify that the work on this exam is my own and that I have not discussed the specific contents of this exam with anyone prior to taking it.

Initials:

Instructions: You may not use any notes, the text or your colleagues (please keep your eyes on your own work!). Remember- you are being tested over the ideas/techniques from Calculus; answers with no appropriate justification will receive no credit. There are some formulas at the end of the exam you might find helpful.

1. Give the definition of the derivative: $f^{\prime}(x)=$
2. State the Fundamental Theorem of Calculus. It begins by having f be a continuous function on $[a, b]$.
3. True or False (and give a short reason):
(a) If f is continuous at $x=a$, then f is differentiable at $x=a$.
(b) If $3 \leq f(x) \leq 5$ for all x, then $6 \leq \int_{1}^{3} f(x) d x \leq 10$.
(c) All continuous functions have antiderivatives.
(d) $\int_{-2}^{1}-x^{-2} d x=\left.x^{-1}\right|_{-2} ^{1}=\frac{3}{2}$
4. Find $f^{\prime}(x)$ directly from the definition of the derivative $f(x)=\sqrt{1+x}$.
5. Derive the formula for the derivative of $y=\sin ^{-1}(x)$.
6. Find $d y / d x$ (solve for it, if necessary):
(a) $y=\sin ^{3}\left(x^{2}+1\right)+\tan ^{-1}(x)$
(b) $y=3^{1 / x}+\sec (x)$
(c) $\sqrt{x+y}=4 x y$
7. Find the limit, if it exists (you may use any technique from class):
(a) $\lim _{x \rightarrow 0} \frac{1-\mathrm{e}^{-2 x}}{\sec (x)}$
(c) $\lim _{x \rightarrow-\infty} \sqrt{\frac{2 x^{2}-1}{x+8 x^{2}}}$
(b) $\lim _{x \rightarrow 4^{+}} \frac{x-4}{|x-4|}$
(d) $\lim _{x \rightarrow 0^{+}} x^{x}$
8. Evaluate the Riemann sum by first writing it as an appropriate definite integral: $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1+\frac{3 i}{n}}$.
9. Differentiate: $F(x)=\int_{\sqrt{x}}^{x^{2}} \frac{t}{1+t} d t$
10. Evaluate the definite integral by using the definition. That is, first write the Riemann sum, then take the appropriate limit. (You must use the Riemann sum to get credit)
$\int_{0}^{3} 1+3 x d x$
11. Use an appropriate substitution to evaluate: $\int x^{2} \mathrm{e}^{x^{3}} d x$
12. Evaluate, or find the general indefinite integral.
(a) $\int \sqrt{x^{3}}+\frac{1}{x^{2}+1} d x$
(b) $\int_{-1}^{1} t(1-t) d t$
(c) $\int_{0}^{1} 5 x-5^{x} d x$
13. Evaluate:
(a) $\int_{0}^{1} \frac{d}{d x}\left(\mathrm{e}^{\tan ^{-1}(x)}\right) d x$
(b) $\frac{d}{d x} \int_{0}^{1} \mathrm{e}^{\tan ^{-1}(x)} d x$
(c) $\frac{d}{d x} \int_{0}^{x} \mathrm{e}^{\tan ^{-1}(t)} d t$
14. Given the graph of the derivative, $f^{\prime}(x)$, below, answer the following questions:
(a) Find all intervals on which f is increasing.
(b) Find all intervals on which f is concave up.
(c) Sketch a possible graph of f if we require that $f(0)=-1$.

15. A rectangle is to be inscribed between the x-axis and the upper part of the graph of $y=8-x^{2}$ (symmetric about the y-axis). For example, one such rectangle might have vertices: $(1,0),(1,7),(-1,7),(-1,0)$ which would have an area of 14 . Find the dimensions of the rectangle that will give the largest area.
16. Find all values of c and d so that f is continuous at all real numbers:

$$
f(x)=\left\{\begin{aligned}
2 x^{2}-1 & \text { if } x<0 \\
c x+d & \text { if } 0 \leq x \leq 1 \\
\sqrt{x+3} & \text { if } x>1
\end{aligned}\right.
$$

Be sure it is clear from your work that you understand the definition of continuity.

Formulas

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

