Quick Exercises

Find the derivative:

$$
f(x)=e^{5}
$$

Quick Exercises

Find the derivative:

$$
\begin{aligned}
& f(x)=e^{5} \\
& f^{\prime}(x)=0
\end{aligned}
$$

Find the derivative:

$$
F(t)=\sqrt[4]{t}-4 \mathrm{e}^{t}-3 t^{2}+8
$$

Find the derivative:

$$
\begin{aligned}
& F(t)=\sqrt[4]{t}-4 \mathrm{e}^{t}-3 t^{2}+8 \\
& F(t)=t^{1 / 4}-4 \mathrm{e}^{t}-3 t^{2}+8
\end{aligned}
$$

Find the derivative:

$$
\begin{aligned}
& F(t)=\sqrt[4]{t}-4 \mathrm{e}^{t}-3 t^{2}+8 \\
& F(t)=t^{1 / 4}-4 \mathrm{e}^{t}-3 t^{2}+8 \\
& F^{\prime}(t)=\frac{1}{4} t^{-3 / 4}-4 \mathrm{e}^{t}-6 t
\end{aligned}
$$

Find the derivative:

$$
f(x)=(x-2)(2 x+1)
$$

Find the derivative:

$$
\begin{gathered}
f(x)=(x-2)(2 x+1) \\
f(x)=2 x^{2}-3 x-2
\end{gathered}
$$

Find the derivative:

$$
\begin{gathered}
f(x)=(x-2)(2 x+1) \\
f(x)=2 x^{2}-3 x-2 \\
f^{\prime}(x)=4 x-3
\end{gathered}
$$

Find the derivative:

$$
f(x)=\frac{x^{2}+3 x+1}{\sqrt{x}}
$$

Find the derivative:

$$
f(x)=\frac{x^{2}+3 x+1}{\sqrt{x}}
$$

$$
f(x)=x^{2-1 / 2}+3 x^{1-1 / 2}+x^{-1 / 2}
$$

Find the derivative:

$$
f(x)=\frac{x^{2}+3 x+1}{\sqrt{x}}
$$

$$
f(x)=x^{2-1 / 2}+3 x^{1-1 / 2}+x^{-1 / 2}=x^{3 / 2}+3 x^{1 / 2}+x^{-1 / 2}
$$

Find the derivative:

$$
f(x)=\frac{x^{2}+3 x+1}{\sqrt{x}}
$$

$$
f(x)=x^{2-1 / 2}+3 x^{1-1 / 2}+x^{-1 / 2}=x^{3 / 2}+3 x^{1 / 2}+x^{-1 / 2}
$$

$$
f^{\prime}(x)=\frac{3}{2} x^{1 / 2}+\frac{3}{2} x^{-1 / 2}-\frac{1}{2} x^{-3 / 2}
$$

Find the equation of the tangent and normal line to $y=\sqrt{x}+x$ at $x=1$.

Find the equation of the tangent and normal line to $y=\sqrt{x}+x$ at $x=1$.
Point: $x=1, y=2$. Slope for \tan line is the derivative evaluated at $x=1$.

Find the equation of the tangent and normal line to $y=\sqrt{x}+x$ at $x=1$.
Point: $x=1, y=2$. Slope for \tan line is the derivative evaluated at $x=1$.

$$
y^{\prime}=\frac{1}{2} x^{-1 / 2}+1=\frac{1}{2 \sqrt{x}}+\left.1\right|_{x=1}=\frac{3}{2}
$$

Find the equation of the tangent and normal line to $y=\sqrt{x}+x$ at $x=1$.
Point: $x=1, y=2$. Slope for \tan line is the derivative evaluated at $x=1$.

$$
y^{\prime}=\frac{1}{2} x^{-1 / 2}+1=\frac{1}{2 \sqrt{x}}+\left.1\right|_{x=1}=\frac{3}{2}
$$

Slope for normal line:

Find the equation of the tangent and normal line to $y=\sqrt{x}+x$ at $x=1$.
Point: $x=1, y=2$. Slope for \tan line is the derivative evaluated at $x=1$.

$$
y^{\prime}=\frac{1}{2} x^{-1 / 2}+1=\frac{1}{2 \sqrt{x}}+\left.1\right|_{x=1}=\frac{3}{2}
$$

Slope for normal line: $-2 / 3$

Find the equation of the tangent and normal line to $y=\sqrt{x}+x$ at $x=1$.
Point: $x=1, y=2$. Slope for \tan line is the derivative evaluated at $x=1$.

$$
y^{\prime}=\frac{1}{2} x^{-1 / 2}+1=\frac{1}{2 \sqrt{x}}+\left.1\right|_{x=1}=\frac{3}{2}
$$

Slope for normal line: $-2 / 3$
The two lines are:

$$
y-2=\frac{3}{2}(x-1) \quad y-2=-\frac{2}{3}(x-1)
$$

If displacement of an object is given by $s(t)=\mathrm{e}^{t}-t^{4}$, find velocity and acceleration.

If displacement of an object is given by $s(t)=\mathrm{e}^{t}-t^{4}$, find velocity and acceleration.

$$
v(t)=s^{\prime}(t)=\mathrm{e}^{t}-4 t^{3}
$$

If displacement of an object is given by $s(t)=\mathrm{e}^{t}-t^{4}$, find velocity and acceleration.

$$
v(t)=s^{\prime}(t)=\mathrm{e}^{t}-4 t^{3} \quad a(t)=s^{\prime \prime}(t)=\mathrm{e}^{t}-12 t^{2}
$$

Let $f(x)=\left|x^{2}-9\right|$.
For what values of f is the function differentiable? Find a formula for f^{\prime}.

Let $f(x)=\left|x^{2}-9\right|$.
For what values of f is the function differentiable? Find a formula for f^{\prime}. The function is x^{2} (opening up), shifted down 9 units... Intercepts at $x= \pm 3$

$$
\left|x^{2}-9\right|=\left\{\begin{aligned}
-\left(x^{2}-9\right) & \text { if }-3 \leq x \leq 3 \\
x^{2}-9 & \text { if } x<-3 \text { or } x>3
\end{aligned}\right.
$$

Let $f(x)=\left|x^{2}-9\right|$.
For what values of f is the function differentiable? Find a formula for f^{\prime}. The function is x^{2} (opening up), shifted down 9 units... Intercepts at $x= \pm 3$

$$
\begin{aligned}
& \left|x^{2}-9\right|=\left\{\begin{aligned}
-\left(x^{2}-9\right) & \text { if }-3 \leq x \leq 3 \\
x^{2}-9 & \text { if } x<-3 \text { or } x>3
\end{aligned}\right. \\
& f^{\prime}(x)=\left\{\begin{aligned}
-2 x & \text { if }-3<x<3 \\
2 x & \text { if } x<-3 \text { or } x>3
\end{aligned}\right.
\end{aligned}
$$

with $f^{\prime}(\pm 3)$ DNE.

