GROUP WORK 2, SECTION 3.2
 Sparse Data

Assume that $f(x)$ and $g(x)$ are differentiable functions about which we know very little. In fact, assume that all we know about these functions is the following table of data:

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-2	3	1	-5	8
-1	-9	7	4	1
0	5	9	9	-3
1	3	-3	2	6
2	-5	3	8	$?$

This isn't a lot of information. For example, we can't compute $f^{\prime}(3)$ with any degree of accuracy. But we are still able to figure some things out, using the rules of differentiation.
I. Let $h(x)=e^{x} f(x)$. What is $h^{\prime}(0)$?
2. Let $j(x)=-4 f(x) g(x)$. What is $j^{\prime}(1)$?
3. Let $k(x)=\frac{x f(x)}{g(x)}$. What is $k^{\prime}(-2)$?
4. Let $l(x)=x^{3} g(x)$. If $l^{\prime}(2)=-48$, what is $g^{\prime}(2)$?
5. Let $m(x)=\frac{1}{f(x)}$. What is $m^{\prime}(1)$?

