
Summary of 4.4

Suppose f and g are differentiable and g′(x) 6= 0 except on an open interval that contains
x = a (except possibly at x = a). Then, if

lim
x→a

f(x)

g(x)
=

0

0
=
±∞
±∞

then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

if the limit on the right side exists (or is ±∞).

A couple of cautions about l’Hospital’s Rule:

• If you do not have one of the indeterminate forms, then do NOT use l’Hospital’s rule.

• The conditions imply that the limit of f, g is either 0 or ∞- The method fails if the
limit(s) DNE. (The example from class yesterday).

Algebra to get into the right form:

• f(x)g(x) = f(x)/(1/g(x))

• y = f(x)g(x) → ln(y) = g(x) ln(f(x))

In this case, take the limit of the log of y, then at the end, exponentiate.

A couple of examples

1.

lim
x→0

[
1

ln(x+ 1)
− 1

x

]
= lim

x→0

x− ln(x+ 1)

x ln(x+ 1)

Now it is a form for l’Hospital’s Rule:

= lim
x→0

1− 1/(x+ 1)

ln(x+ 1) + x 1
x+1

= lim
x→0

x

x+ 1
· x+ 1

(x+ 1) ln(x+ 1) + x
= lim

x→0

x

(x+ 1) ln(x+ 1) + x

Use l’Hospital’s rule again:

lim
x→0

1

ln(x+ 1) + x+1
x+1

+ 1
=

1

2

2.

lim
x→0

sec(x)− 1

x2
= lim

x→0

sec(x) tan(x)

2x
= lim

x→0

sin(x)

2x cos2(x)
= lim

x→0

cos(x)

2 cos2(x)− 4x cos(x) sin(x)
=

1

2



4.7: Optimization Problems

There are two issues in Section 4.7:

• Convert the “story problem” into a mathematical problem.

• How can we optimize a function over a domain that is not closed?

For the second part, sometimes we can use the first derivative to tell us some specifics.

The First Derivative Test (for Absolute Extreme Values)

Suppose that f is continuous for all x in an interval I, and we have the following sign chart:

f ′(x) + −
x < c x > c

Then f(c) is the absolute maximum value of f on I. If we change the signs on the sign chart,

f ′(x) − +
x < c x > c

then f(c) is the absolute minimum value of f on I.

Optimization Examples

1. Suppose two nonnegative numbers are such that the first plus the square of the second
is 10. Find the numbers if the sum is to be as large as possible.

SOLUTION: First label the unknown- Let x, y be the two numbers. Then we want to:

max x+ y s.t.

2. A piece of wire of length L is bent into the shape of a rectangle. What dimensions
produce the rectangle with maximum area?

SOLUTION: Draw a picture of a rectangle, and let’s label the bottom as x and the
side as y. Then

A = xy 2x+ 2y = L



Therefore, we can make area a function of one variable:

A = x
(

1

2
L− x

)
0 ≤ x ≤ L

2

This is now a problem of maximizing a differentiable function over a closed interval:

A =
1

2
xL− x2 ⇒ A′ =

1

2
L− 2x = 0 ⇒ x = L/4

Although we don’t really need it, we can construct a table:

x 0 L/4 L/2
A 0 L2/16 0

We should make a square (with side length L/4) to maximize the enclosed area.

NOTE: A common occurrence with these problems is to have some expression
involving more than one variable, with a side equation from which we can make a
substitution so that our expression has only one variable.

3. Minimize Travel Time:

RECALL: If you go at a constant rate r, then we have the ever popular formula
relating distance, time and rate: d = rt or t = d/r.

Your house is 4 miles from the highway (shortest distance), and the distance from that
point on the highway to town is 9 miles (see figure). The speed on the dirt road to the
highway is 20 MPH, and the speed on the highway is 60 MPH.

How should we build a dirt road to the highway that will minimize our total travel
time to town? Before we build the answer, let’s try some trial roads:

• If we build a gravel road that has the shortest distance (4 miles), the time for
travel would be (t = d/r):

4

20
+

9

60
=

4 + 3

20
=

7

21
≈ 0.35 hours



•

If we go by dirt all the way, then the distance we travel
is (by the Pythagorean Theorem)

√
42 + 92 =

√
97 ≈ 9.8489 miles

so that the total time traveled will be:
√

9720 ≈ 0.494
hours.
• Is there a shorter route?

Now, let x be the point on the highway which connects the
dirt road, so that 0 ≤ x ≤ 9. Then the distance traveled on
the dirt road will be √

x2 + 16

And the total time to town will be:

T (x) =

√
x2 + 16

20
+

9− x
60

T ′(x) =
1

40

2x√
x2 + 16

− 1

60
= 0

Solving for the critical points, we get:

2x√
x2 + 16

=
2

3
⇒ 3x =

√
x2 + 16 ⇒ 9x2 = x2+16 ⇒ x2 = 2 ⇒ x =

√
2

Build a table:
x 0

√
2 9

T 0.35 0.3385 0.494

Therefore, building a dirt road that connects to the highway
√

2 miles down will give
us the combination that gets us to town in the shortest amount of time.

4. (Econ and Agriculture)

Experiments show that if fertilizer from N lbs of nitrogen and P lbs of phosphate is
used on an acre of Kansas farmland, the number of bushels of corn per acre is:

B = 8 + 0.3
√
NP

Let nitrogen cost 25 cents per lb, and phosphate 20 cents per lb. A farmer intends
to spend $30 per acre on fertilizer. Which combination of nitrogen and phosphate
produces the highest yield?

SOLUTION: We want to maximize the bushels,

B = 8 + 0.3
√
NP

If price were no object, then our model suggests no upper limit to the amount of
fertilizer! However, we have a budget. Assuming we spend exactly $30 per acre on
fertilizer,

0.25N + 0.2P = 30



Remember what we had said before? This is a typical maximization problem, where
the original function has two variables (N,P ), but we have an additional constraint
we can use to make the function B a function of one variable only. It doesn’t matter
which variable, so let’s get rid of P :

P = 150− 1.25N, 0 ≤ N ≤ 120

Substituting, we have:

max
0≤N≤120

8 + 0.3
√
N(150− 1.25N)

Now we have a global maximum problem on a closed interval. Find the critical points,
and compute B on the CPs and endpoints:

dB

dN
= 0.3 · 1

2
(150N − 1.25N2)−1/2(150− 2.5N) = 0 ⇒ 150 = 2.5N ⇒ N = 60

Now our table:
N 0 60 120

B(N) 8 28 8

We maximize the number of bushels by using 60 lbs of nitrogen, and 75 lbs of phosphate
to yield 28 bushels per acre.

5. Design a cylindrical can that has a fixed volume of 10 ft3 and uses the least amount of
metal (include a top and bottom).

SOLUTION: First, let’s get a few formulas nailed down.

A circular cylinder with radius r and height h has vol-
ume V = πr2h. Given this r, h we can write down the
surface area:

A = 2πr2 + 2πrh

We want to minimize the amount of material used, but
note that A is a function r, h. However, we have our
volume side equation that we can use to make a substi-
tution.

10 = πr2h ⇒ h =
10

πr2
, r > 0

Now we can write A in terms of r, and we see that r > 0:

A = 2πr2 + 2πr
(

10

πr2

)
= 2πr2 +

20

r



Taking the derivative:

A′ = 4πr − 20

r2
= 0 ⇒ r3 =

5

π
⇒ r = 3

√
5/π

Now we need to check that this is indeed the value of r that gives us a minimum- Do
this by looking at the sign of the derivative:

A′ − +

0 < r < 3

√
5/π r > 3

√
5/π

Therefore, the radius should be approximately r ≈ 1.17 and h ≈ 2.34.

6. Find the dimensions of the right circular cylinder of greatest volume that be inscribed
in a given right circular cone with radius b and height a (fixed values).

SOLUTION: Some formulas and geometry first.

Now we want to maximize volume with the relationship as a side constraint:

V = πr2h h = a− a

b
r and 0 ≤ r ≤ b

Making the substitution:

V = πr2
(
a− a

b
r
)

= πar2 − πa

b
r3

Differentiate to find CPs:

dV

dr
= 2πar − 3π

a

b
r2 = πar

(
2− 3

b
r
)

= 0 ⇒ r =
2b

3
, 0

Check CPs and endpoints- note that it doesn’t really matter what the volume is at the
critical point. Whatever positive number it is, that’s the max.

r 0 2b/3 b
V 0 ... 0

Therefore, the cylinder with maximum volume is obtained by taking the radius and
height”:

r =
2

3
b h =

a

3



7. We’re on a boat 4 miles to the nearest shoreline (straight), and from that closest point
on shore, a lighthous is 6 miles down. If we can row at 2 mph and walk at 3mph, at
what point on the shore should we land the boat to minimize our travel time?

SOLUTION: First draw some diagrams and determine notation.

Let x denote the distance from the shortest point
to shore to where we land the boat. For example,
if x = 0, we sail the boat straight in for 4 miles,
then walk for 6 miles. This gives a travel time (use
d = rt, or t = d/r) of

4

2
+

6

3
= 2 + 2 = 4 hours

Similarly, if we travel by boat all the way to the lighthouse, the distance is
√

42 + 62 =√
52 ≈ 7.21, so the time: √

52

2
+

0

3
=
√

13 ≈ 3.6

Now, consider the figure below when we take the boat to x:

We see that the total travel time is now
√

16 + x2

2
+

6− x
3

The critical point:

1

4
(16 + x2)−1/2(2x)− 1

3
= 0

Simplify and set to zero:

x

2
√

16 + x2
=

1

3
⇒ 3x = 2

√
16 + x2 ⇒ 9x2 = 4(16 + x2)

so we get x = 8/
√

5. Finally, we build our table and take the max:

x 0 8/
√

5 6

time 4 2 + 2
√

5/3 ≈ 3.5 3.6

For the shortest travel time, land the boat at x = 8/
√

5 units down the shore, then
walk the rest of the way in approximately 3.5 hours.

8. (The open box problem)

Suppose we’re given a sheet of paper from which we cut out four squares, one square
from each corner. We fold the edges to make a box with no top. How big should I cut
the squares to maximize the volume of the box?

SOLUTION: First draw a sketch and set the notation.



We can maximize the volume of such a box in a straightfoward manner:

V = (11− 2x)(8.5− 2x)x = 4x3 − 39x2 + 93
1

2
x, 0 ≤ x ≤ 4

1

4

The volume is zero at both endpoints, so as long as we have some non-zero volume at
the critical point, we’ve found the max. Use the quadratic formula to solve for x:

dV

dx
= 12x2 − 78x+

187

2
= 0 ⇒ x = 1.58, 4.91

We only keep x = 1.58 since the other value is outside our interval, and this point is
the maximizer with V ≈ 66.14.

9. Find the maximum volume of a box, open at the top, with a square base and is
composed of 600 square inches of material.

SOLUTION: Draw a sketch, and let the box have base dimensions s × s with height
h. Then we

maxV = s2h A = s2 + 4sh = 600

Again, we have a function of two variables, but we use the side constraint to make the
function a function of one variable. Writing h in terms of s,

h =
600− s2

4s

Now our maximization problem becomes:

V = s2
(

600− s2

4s

)
= 150s− 1

4
s3, 0 ≤ s ≤

√
600

dV

ds
= 150− 3

4
s2 = 0 ⇒ s2 = 200 ⇒ s = 10

√
2

Using a table, we see that the volume at s = 0 and s =
√

600 is 0, so the value at our
only critical point must be the absolute maximum.



10. Find the maximum area of a rectangle inscribed in a circle of radius 1.

Start by sketching this out and getting some relevant formu-
las. It is important to note that the corner of the rectangle
sits at the point (x, y) on the unit circle, so that

x2 + y2 = 1

The dimensions of the rectangle are then 2x × 2y, and we
have our maximization problem.

We want to
maxA = 4xy such that x2 + y2 = 1

Use the side constraint to make the function a function of one variable.

A = 4x
√

1− x2, 0 ≤ x ≤ 1

Differentiate to find CPs:

dA

dx
= 4
√

1− x2 + 4x(1/2)(1− x2)−1/2(−2x) =
4(1− x2)− 4x2√

1− x2
=

4(1− 2x2)√
1− x2

= 0

Therefore, noting the area at the endpoints is zero,

x =
1√
2
, y =

1√
2

gives the max area of 2


