Summary: To Exam 1 (Up through 2.8)

General Background: Chapter 1 and Appendices

There is a lot of algebra and trigonometry in Chapter 1, and Appendices A, B, C and D, so this is not an exhaustive list of everything you need to know, but there are some things we highlighted:

1. Construct the equation of a line (pt-slope form), Use the quadratic formula, find trigonometric values from right triangles/unit circle, function composition, simplify exponentials/logs using rules of exponents/logs.
2. Definitions: $|x|$, "one-to-one", "natural domain"
3. Be able to "Find the domain".
4. Use a sign chart to determine where an expression is positive/negative.
5. Know the difference between "inverse of a function" and the reciprocal of a function.
6. Given a formula for $f(x)$, be able to compute expressions like $f(2+h)$.

The Limit: 2.1-2.3 and 2.6

1. Be able to compute limits algebraically and graphically.
2. Understand the meaning of, and be able to compute right and left-hand limits.
3. Work with and understand the definition of the limit
$\lim _{x \rightarrow a} f(x)=L$ means that we can keep the $f(x)$ values arbitrarily close to L by keeping the x-values sufficiently close to a.
4. Algebraic Methods to compute limits:
(a) Simplify (e.g., absolute values)
(b) Factor and Cancel
(c) Multiply by Conjugate
(d) Divide by x^{n} (Mainly for $x \rightarrow \infty$). Be careful! $x=\sqrt{x^{2}}$ if $x \geq 0$, but if $x<0$, $x=-\sqrt{x^{2}}$
5. The Squeeze Theorem.
6. Horizontal/Vertical Asymptotes:
(a) $x=a$ is a vertical asymptote for $f(x)$ if one of the following:
$\lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty$
(b) $y=b$ is a horizontal asymptote for $f(x)$ if one of the following:

$$
\lim _{x \rightarrow \pm \infty} f(x)=b
$$

Our template function: $\lim _{x \rightarrow \pm \infty} \frac{1}{x^{r}}=0, \quad r>0$
(Note: x^{r} needs to be computable if $x \rightarrow-\infty$) Also, in a similar vein: $\lim _{x \rightarrow \infty} \mathrm{e}^{-x}=0$ The inverse tangent has horizontal asymptotes:

$$
\lim _{x \rightarrow \pm \infty} \tan ^{-1}(x)= \pm \frac{\pi}{2}
$$

And in general, if a function has a vertical asymptote at $x=a$, its inverse function will have a horizontal asymptote at $y=a$.
7. Intuition that can be used:
(a) " $\infty+\infty=\infty$ ", but $\infty-\infty$ is not necessarily 0 . (Similarly, the product but not the quotient)
(b) If the denominator goes to zero, but the numerator does not, the limit is $\pm \infty$.
(c) If the denominator goes to $\pm \infty$, and the numerator does not, the overall limit goes to zero.
(d) Given a rational function, if the degree of the numerator is larger than the denominator, the function goes to $\pm \infty$ as $x \rightarrow \pm \infty$.
If the degree of the denominator is larger, then the function goes to zero (again, as $x \rightarrow \pm \infty$)
8. Limit Laws (2.3) You won't need to state them, but you may have to compute using them.

Continuity and IVT (2.5)

1. Definition: f is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$
2. Interpretation of the definition: This means 3 thing- What are they?
3. Show that a function is not continuous at a point by stating which of the three parts are violated.
4. Show that a function is continuous by using the definition.
5. Give the meaning of "continuous from the right" and "continuous from the left".
6. Theory about continuous functions: Know that our usual functions (see the list in Theorem 7) are all continuous on their domain. Know that the sum/difference, product/quotient of continuous functions is continuous (with a possibly restricted domain)
7. Be able to state and use the Intermediate Value Theorem:

If f is continuous on $[a, b]$, and N is a number between $f(a)$ and $f(b)$, there is at least one c in $[a, b]$ so that $f(c)=N$.
In practice, we usually use the IVT as:
If f is continuous, and $f\left(x_{1}\right)>0, f\left(x_{2}\right)<0$, then there is a c between x_{1} and x_{2} where $f(c)=0$ (f has at least one root in the interval between x_{1} and x_{2}).

The Derivative (2.7-2.8)

1. Know the definition of average velocity and the technique we use to get instantaneous velocity (2.1)
2. Definition:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Be able to compute this given numerical values of a, or as an arbitrary value of a (you would be given $f(x)$).
3. Interpretations of the Derivative of f at $x=a$:
(a) The velocity at $x=a$.
(b) The slope of the tangent line at $(a, f(a))$.
(c) The instantaneous rate of change of f at $x=a$.
4. Equation of the Tangent Line at $x=a$: This is the line going through $(a, f(a))$ with slope $f^{\prime}(a)$. Use point-slope form.
5. Be able to compute the derivative $f^{\prime}(x)$ using the definition (from 2.8).
6. Know what "differentiable" means.
7. Given the graph of f, be able to:
(a) Sketch $f^{\prime}(x)$
(b) Say if f is differentiable at each $x=a$.
(c) Understand the relationship between continuity and differentiability.
8. Be able to compute a higher derivative, like $f^{\prime \prime}(x)$ or $f^{\prime \prime \prime}(x)$.

