Exam 2 Review: Sections 3.1-3.6, 3.9

This portion of the course covered the bulk of the formulas and techniques for differentiation. Note that we have covered sections 3.1-3.6 and 3.9.

For Chapter 3, the following tables provide a summary of the rules/techniques for differentiation:

f(x)	$\int f'(x)$	Sect	f(x)	$\int f'(x)$	Sect
С	0	3.1	cf	cf'	3.1
x^n	nx^{n-1}	3.1	$f \pm g$	$f' \pm g'$	3.1
a^x	$a^x \ln(a)$	3.1	$f \cdot g$	f'g + fg'	3.2
e^x	e^x	3.1	$\frac{f}{g}$	$\int g + \int g$ $\frac{f'g - fg'}{g^2}$	3.2
$\log_a(x)$	$\frac{1}{x \ln(a)}$	3.6	f(g(x))	f'(g(x))g'(x)	3.4
$\ln(x)$	$\frac{1}{x}$	3.6	$f(x)^{g(x)}$	Logarithmic Diff	3.6
$\sin(x)$	$\cos(x)$	3.3	Eqn in x, y	Implicit Diff	3.5
$\cos(x)$	$-\sin(x)$	3.3			
$\tan(x)$	$\sec^2(x)$	3.3			
$\sec(x)$	$\sec(x)\tan(x)$	3.3			
$\csc(x)$	$-\csc(x)\cot(x)$	3.3			
$\cot(x)$	$-\csc^2(x)$	3.3			
$\sin^{-1}(x)$	$\frac{1}{\sqrt{1-r^2}}$	3.5			
$\tan^{-1}(x)$	$\begin{vmatrix} \frac{1}{\sqrt{1-x^2}} \\ \frac{1}{1+x^2} \end{vmatrix}$	3.5			

Vocabulary/Techniques:

• Be sure you distinguish between:

$$a^x$$
 or $a^{f(x)}$ x^a or $(f(x))^a$ $f(x)^{g(x)}$

- Implicit Differentiation: A technique where we are given an equation with x, y. We treat y as a function of x, and differentiate without explicitly solving for y first.
 Example: x²y + √xy = 6x → 2xy + x²y' + ½(xy)^{-½}(y + xy') = 6
- Logarithmic Differentiation: A technique where we apply the logarithm to y = f(x) before differentiating. Used for taking the derivative of complicated expressions, and needed for taking the derivative of $f(x)^{g(x)}$.

Example: $y = x^x \to \ln(y) = x \ln(x) \to \frac{1}{y}y' = \ln(x) + 1 \to \dots$ etc

• Differentiation of Inverses: If we know the derivative of f(x), then we can determine the derivative of $f^{-1}(x)$. This technique was used to find derivatives of the inverse trig functions, for example:

 $y = f^{-1}(x) \Rightarrow f(y) = x \Rightarrow f'(y)y' = 1$ From this, we could write:

$$\frac{d}{dx}\left(f^{-1}(x)\right) = \frac{1}{f'(f^{-1}(x))}$$

Alternatively, we say that if (a, b) is on the graph of f and f'(a) = m, then we know that (b, a) is on the graph of f^{-1} , and $\frac{df^{-1}}{dx}(b) = \frac{1}{m}$.

NOTE: This is NOT the same as the derivative of $(f(x))^{-1} = \frac{1}{f(x)}$, which is

$$\frac{d}{dx}\left((f(x))^{-1}\right) = -\left(f(x)\right)^{-2}f'(x) = \frac{-f'(x)}{(f(x))^2}$$

• We also have an alternative version of the Chain Rule that may be useful in certain cases.

For example, if Volume is a function of Radius, Radius is a function of Pressure, Pressure is a function of time, then we can find the rate of change of Volume in terms of the Radius, or the Pressure, or the time. Respectively, this is:

$$\frac{dV}{dR}, \qquad \frac{dV}{dP} = \frac{dV}{dR} \cdot \frac{dR}{dP}, \qquad \frac{dV}{dt} = \frac{dV}{dR} \cdot \frac{dR}{dP} \cdot \frac{dP}{dt}$$

In fact, we could also find things like dR/dV, dP/dR, and so on because of the relationship between the derivative of a function and its inverse: dx/dy = 1/(dy/dx).

- Things that come up in the inverse trig stuff: Be able to simplify expressions like $\tan(\cos^{-1}(x))$, $\sin(\tan^{-1}(x))$, etc. using an appropriate right triangle.
- Remember the logarithm rules:
 - 1. $A = e^{\ln(A)}$ for any A > 0.
 - 2. $\log(ab) = \log(a) + \log(b)$
 - 3. $\log(a/b) = \log(a) \log(b)$
 - 4. $\log(a^b) = b \log(a)$
- Always simplify BEFORE differentiating. Example: To differentiate $y = x\sqrt{x}$, first rewrite as $y = x^{3/2}$
- For related rates, you should be familiar with "similar triangles", the Pythagorean theorem, area/volume formulas for simple objects (formulas for spheres, cones, etc., would be provided where necessary).