Exam 2 Review: Sections 3.1-3.6, 3.9

This portion of the course covered the bulk of the formulas and techniques for differentiation. Note that we have covered sections 3.1-3.6 and 3.9.

For Chapter 3, the following tables provide a summary of the rules/techniques for differentiation:

Vocabulary/Techniques:

• Be sure you distinguish between:

$$
a^x \text{ or } a^{f(x)} \qquad x^a \text{ or } (f(x))^a \qquad f(x)^{g(x)}
$$

- Implicit Differentiation: A technique where we are given an equation with x, y . We treat y as a function of x , and differentiate without explicitly solving for y first. Example: $x^2y + \sqrt{xy} = 6x \rightarrow 2xy + x^2y' + \frac{1}{2}$ $\frac{1}{2}(xy)^{-\frac{1}{2}}(y+xy')=6$
- Logarithmic Differentiation: A technique where we apply the logarithm to $y = f(x)$ before differentiating. Used for taking the derivative of complicated expressions, and needed for taking the derivative of $f(x)^{g(x)}$.

Example: $y = x^x \rightarrow \ln(y) = x \ln(x) \rightarrow \frac{1}{y}y' = \ln(x) + 1 \rightarrow \dots$ etc

• Differentiation of Inverses: If we know the derivative of $f(x)$, then we can determine the derivative of $f^{-1}(x)$. This technique was used to find derivatives of the inverse trig functions, for example:

 $y = f^{-1}(x) \Rightarrow f(y) = x \Rightarrow f'(y)y' = 1$ From this, we could write:

$$
\frac{d}{dx}\left(f^{-1}(x)\right) = \frac{1}{f'(f^{-1}(x))}
$$

Alternatively, we say that if (a, b) is on the graph of f and $f'(a) = m$, then we know that (b, a) is on the graph of f^{-1} , and $\frac{df^{-1}}{dx}(b) = \frac{1}{m}$.

NOTE: This is NOT the same as the derivative of $(f(x))^{-1} = \frac{1}{f(x)}$ $\frac{1}{f(x)}$, which is

$$
\frac{d}{dx}\left((f(x))^{-1}\right) = -(f(x))^{-2} f'(x) = \frac{-f'(x)}{(f(x))^2}
$$

• We also have an alternative version of the Chain Rule that may be useful in certain cases.

For example, if Volume is a function of Radius, Radius is a function of Pressure, Pressure is a function of time, then we can find the rate of change of Volume in terms of the Radius, or the Pressure, or the time. Respectively, this is:

$$
\frac{dV}{dR}, \qquad \frac{dV}{dP} = \frac{dV}{dR} \cdot \frac{dR}{dP}, \qquad \frac{dV}{dt} = \frac{dV}{dR} \cdot \frac{dR}{dP} \cdot \frac{dP}{dt}
$$

In fact, we could also find things like dR/dV , dP/dR , and so on because of the relationship between the derivative of a function and its inverse: $dx/dy = 1/(dy/dx)$.

- Things that come up in the inverse trig stuff: Be able to simplify expressions like $tan(cos^{-1}(x))$, $sin(tan^{-1}(x))$, etc. using an appropriate right triangle.
- Remember the logarithm rules:
	- 1. $A = e^{\ln(A)}$ for any $A > 0$.
	- 2. $log(ab) = log(a) + log(b)$
	- 3. $\log(a/b) = \log(a) \log(b)$
	- 4. $\log(a^b) = b \log(a)$
- Always simplify BEFORE differentiating. Example: To differentiate $y = x$ √ $\overline{x}, \text{ first}$ rewrite as $y = x^{3/2}$
- For related rates, you should be familiar with "similar triangles", the Pythagorean theorem, area/volume formulas for simple objects (formulas for spheres, cones, etc., would be provided where necessary).