Exam 3 Review solutions

1. True or False, and give a short reason:
(a) If $f^{\prime}(a)=0$, then there is a local maximum or local minimum at $x=a$.

FALSE: For example, $f(x)=x^{3}$ at $x=0$.
(b) If f has a global minimum at $x=a$, then $f^{\prime}(a)=0$.

FALSE. It could be that $x=a$ is an endpoint for an interval, or a point where $f^{\prime}(a)$ does not exist.
(c) If $f^{\prime \prime}(2)=0$, then $(2, f(2))$ is an inflection point for f.

FALSE. An inflection point is one where the concavity changes.
In the following, "increasing" or "decreasing" will mean for all real numbers x :
(d) If $f(x)$ is increasing, and $g(x)$ is increasing, then $f(x)+g(x)$ is increasing.

TRUE: Since f, g are increasing, f^{\prime}, g^{\prime} are both positive so $f^{\prime}+g^{\prime}$ is positive as well.
(e) If $f(x)$ is increasing, and $g(x)$ is increasing, then $f(x) g(x)$ is increasing.

FALSE: It might be true, but

$$
(f g)^{\prime}=f^{\prime} g+f g^{\prime}
$$

so we might have that $g<0$ and $f<0$, for example. In that case, the derivative would be negative.
(f) If $f(x)$ is increasing, and $g(x)$ is decreasing, then $f(g(x))$ is decreasing.

TRUE:

$$
(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)
$$

so f^{\prime} (evaluated at $\left.g(x)\right)$ is positive, and g^{\prime} is positive.
2. Find the global maximum and minimum of the given function on the interval provided:
(a) $f(x)=\sqrt{9-x^{2}},[-1,2]$

SOLUTION: $f^{\prime}(x)=-x / \sqrt{9-x^{2}}$, so we add the critical point $x=0$. Build a table:

$$
\begin{array}{r|rrr}
x & -1 & 0 & 2 \\
\hline y & 2.82 & 3.0 & 2.23
\end{array}
$$

So the global minimum is $y=2.23$ and the global maximum is $y=3.0$
(b) $g(x)=x-2 \cos (x),[-\pi, \pi]$

SOLUTION: $g^{\prime}(x)=1+2 \sin (x)$. Use a triangle and/or unit circle to find the values of $x=-5 \pi / 6$ and $x=-\pi / 6$. Now the table:

$$
\begin{array}{r|rrrr}
x & -\pi & -5 \pi / 6 & -\pi / 6 & \pi \\
\hline y & -1.14 & -0.88 & -2.25 & 5.14
\end{array}
$$

The global minimium is approx -2.25 and the global max is approx 5.14.
3. Find the regions where f is increasing/decreasing: $f(x)=\frac{x}{(1+x)^{2}}$

SOLUTION: Simplifying the derivative, we get:

$$
f^{\prime}(x)=\frac{1-x}{(1+x)^{3}}
$$

Sign chart (include $x=-1$ although it is a vertical asymptote):

$$
\begin{array}{r|rrr}
f^{\prime}(x) & - & + & - \\
\hline & x<-1 & -1<x<1 & x>1
\end{array}
$$

Therefore, f is decreasing if $x<-1$ and if $x>1$, and increasing if $-1<x<1$.
4. For each function below, determine (i) where f is increasing/decreasing, (ii) where f is concave up/concave down, and (iii) find the local extrema.
(a) $f(x)=x^{3}-12 x+2$ (See Exercise 33, 4.3)

Hint: $f^{\prime}(x)=3 x^{2}-12=3\left(x^{2}-4\right)=3(x-2)(x+2)$, then look at a sign chart, and $f^{\prime \prime}(x)=6 x$.
(b) $f(x)=x \sqrt{6-x}$ (See Exercise 39, 4.3)

Hints: The domain is $x \leq 6$, and we can simplify

$$
\begin{aligned}
f^{\prime}(x) & =\frac{3}{2} \cdot \frac{x-4}{\sqrt{6-x}} \\
f^{\prime \prime}(x) & =\frac{3}{4} \cdot \frac{x-8}{(6-x)^{3 / 2}}
\end{aligned}
$$

(c) $f(x)=x-\sin (x), 0<x<4 \pi$ (See Exercise 44. 4.3)

SOLUTION: $f^{\prime}(x)=1-\cos (x)$, and $\cos (x)=1$ at $x=0,2 \pi, 4 \pi$. Since we do not include $0,4 \pi$ in the interval, we have:

$$
\begin{array}{r|rr}
f^{\prime}(x) & + & + \\
\hline & 0<x<2 \pi & 2 \pi<x<4 \pi
\end{array}
$$

Therefore, $f^{\prime}(x)>0$, and f is always increasing.
For concavity, $f^{\prime \prime}(x)=\sin (x)$. The sine is posiive (so f is increasing) on $(0, \pi)$ and $(2 \pi, 3 \pi)$. The sine is negative (so f is decreasing) on $(\pi, 2 \pi)$ and ($3 \pi, 4 \pi$).
For local extrema, the only critical point is 2π, and from our analysis of the first derivative, we see that this is a plateau, not a local extreme point (so there are no local extrema).
5. Suppose $f(3)=2, f^{\prime}(3)=\frac{1}{2}$, and $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$ for all x.
(a) Sketch a possible graph for f.

SOLUTION: At the point $(3,2)$, the function increases and is concave down.
(b) How many roots does f have? (Explain):

SOLUTION: The function f can have at most 1 root. If it had two roots, Rolle's theorem would mean that $f^{\prime}(x)=0$ for some x between the roots- But we're told that $f^{\prime}(x)>0$.
(c) Is it possible that $f^{\prime}(2)=1 / 3$? Why?

SOLUTION: Since $f^{\prime}(3)=1 / 2$ and $1 / 3<1 / 2$, then this implies that f^{\prime} is increasing. However, that implies that $f^{\prime \prime}>0$, but $f^{\prime \prime}(x)<0$ for all x. Therefore, the given value of $f^{\prime}(x)$ is not possible.
6. Let $f(x)=2 x+\mathrm{e}^{x}$. Show that f has exactly one real root.

- We see that $f(-1)=-2+\mathrm{e}^{-1}<0$ and $f(0)=1>0$. Therefore, by the IVT there is at least one real root.
- The derivative is $f^{\prime}(x)=2+\mathrm{e}^{x}$, which is always positive (since e^{x} is always greater than 0). Therefore, by Rolle's Theorem, there is at most 1 real root.
- By the previous 2 items, there is exactly one (real) root.

7. Suppose that $1 \leq f^{\prime}(x) \leq 3$ for all $0 \leq x \leq 2$, and $f(0)=1$. What is the largest and smallest that $f(2)$ can possibly be?
SOLUTION: We can use the MVT:

$$
\frac{f(2)-f(0)}{2-0}=f^{\prime}(c) \quad \Rightarrow \quad 1 \leq \frac{f(2)-1}{2} \leq 3 \quad \Rightarrow \quad 3 \leq f(2) \leq 7
$$

8. Linearize at $x=0$:

$$
y=\sqrt{x+1} \mathrm{e}^{-x^{2}}
$$

Use the linearization to estimate $\sqrt{\frac{3}{2}} \mathrm{e}^{-\frac{1}{4}}$
SOLUTION: At $x=0$, we have $y=\sqrt{1} \mathrm{e}^{0}=1$. Now for the slope:

$$
f^{\prime}(x)=\frac{1}{2}(x+1)^{-1 / 2} \mathrm{e}^{-x^{2}}+\sqrt{x+1} \mathrm{e}^{-x^{2}}(-2 x)
$$

so $f^{\prime}(0)=\frac{1}{2}$, and $L(x)=1+\frac{1}{2} x$. Therefore, (note that the question asks you to approximate $f(1 / 2)$):

$$
f(1 / 2) \approx L(1 / 2)=1+\frac{1}{2} \cdot \frac{1}{2}=\frac{5}{4}
$$

9. Estimate using differentials the change in the quantity:
(a) The period of oscillation:

$$
T(L)=\frac{2 \pi}{\sqrt{32}} L^{1 / 2} \quad \Rightarrow \quad d T=\frac{2 \pi}{4 \sqrt{2}} \frac{1}{2} L^{-1 / 2} d L=\frac{2 \pi}{4 \sqrt{2}} \frac{1}{2} \frac{1}{\sqrt{4}} \frac{1}{2}=\frac{\pi}{16 \sqrt{2}} \approx 0.1388
$$

(b) The velocity of air in the windpipe when the radius changes from 3 to 2 .

$$
V(r)=16 r-r^{3} \Rightarrow d V=\left(16-3 r^{2}\right) d r=(16-3 \cdot 9) \cdot(-1)=11
$$

(Note: This approximation is terrible because the change in r is so large).
10. Let $f(x)=x^{3}-3 x+2$ on the interval $[-2,2]$. Verify that the function satisfies all the hypotheses of the Mean Value Theorem, then find the values of c that satisfy its conclusion.
SOLUTION: f is a polynomial, so it is continuous and differentiable at all real numbers. Now we find c so that

$$
f^{\prime}(c)=\frac{f(2)-f(-2)}{2-(-2)}=\frac{4-0}{4}=1
$$

And $f^{\prime}(c)=3 c^{2}-3$, so:

$$
3 c^{2}-3=1 \quad \Rightarrow \quad c= \pm \frac{2}{\sqrt{3}}
$$

Both of these are in the interval $[-2,2]$.
11. Find the limit, if it exists.
(a) $\lim _{x \rightarrow 0} \frac{\sin ^{-1}(x)}{x}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{1-x^{2}}}=1$
(b) $\lim _{x \rightarrow 0} \frac{x 3^{x}}{3^{x}-1}=\lim _{x \rightarrow 0} \frac{3^{x}+x 3^{x} \ln (3)}{3^{x} \ln (3)}=\frac{1}{\ln (3)}$
(c) $\lim _{x \rightarrow 0^{+}} \sin (x) \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{1 / \sin (x)}=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-\csc (x) \cot (x)}=$

To finish this off, we rewrite the denominator, and we can express this as:

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x} \cdot(-\sin (x) \tan (x))=\lim _{x \rightarrow 0^{+}} \frac{-\sin (x)}{x} \cdot \tan (x)=1 \cdot 0=0
$$

(d) $\lim _{x \rightarrow 0} \cot (2 x) \sin (6 x)$ We'll use the limit of $\sin (\theta) / \theta$:

$$
=\lim _{x \rightarrow 0} \frac{\cos (2 x)}{1} \cdot \frac{1}{\sin (2 x)} \cdot \frac{\sin (6 x)}{1}=\lim _{x \rightarrow 0} \frac{\cos (2 x)}{1} \cdot \frac{2 x}{\sin (2 x)} \cdot \frac{\sin (6 x)}{6 x} \frac{6 x}{2 x}=3
$$

(e) $\lim _{x \rightarrow 0^{+}} x^{\sqrt{x}}$

First, take the log (at the end, we exponentiate):

$$
\lim _{x \rightarrow 0^{+}} \ln \left(x^{\sqrt{x}}\right)=\lim _{x \rightarrow 0^{+}} \sqrt{x} \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x^{-1 / 2}}
$$

Use l'Hospital's rule and simplify:

$$
\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-(1 / 2) x^{-3 / 2}}=\lim _{x \rightarrow 0^{+}} \frac{1}{x} \cdot 2 x^{3 / 2}=\lim _{)} x \rightarrow 0^{+}-2 \sqrt{x}=0
$$

Now exponentiate, so that overall the limit is $\mathrm{e}^{0}=1$.
(f) $\lim _{x \rightarrow 0^{+}}(4 x+1)^{\cot (x)}$

Same idea as before- first take logs, then some algebra to get the right form for l'Hospital's rule.

$$
\lim _{x \rightarrow 0^{+}} \cot (x) \ln (4 x+1)=\lim _{x \rightarrow 0^{+}} \frac{\ln (4 x+1)}{\tan (x)}=\lim _{x \rightarrow 0^{+}} \frac{\frac{4}{4 x+1}}{\sec ^{2}(x)}=\lim _{x \rightarrow 0^{+}} \frac{4 \cos ^{2}(x)}{4 x+1}=4
$$

12. Verify the given linear approximation (for small x).
(a) $\sqrt[4]{1+2 x} \approx 1+\frac{1}{2} x$

SOLUTION: If $f(x)=\sqrt[4]{1+2 x}$, we should find the tangent line approximation for $f(x)$ at $x=0$ (from the statement "for small x ") is the given line. Let's see- we need a point and a slope. The point will be $(0,1)$, and the slope is

$$
f^{\prime}(x)=\frac{1}{4}(1+2 x)^{-3 / 4} \cdot 2 \quad \Rightarrow \quad f^{\prime}(0)=\frac{1}{2}
$$

The tangent line is given by $y-1=\frac{1}{2}(x-0)$, or $y=1+\frac{1}{2} x$
(b) $\mathrm{e}^{x} \cos (x) \approx 1+x$

SOLUTION: If $f(x)=\mathrm{e}^{x} \cos (x)$, we should find the tangent line approximation for $f(x)$ at $x=0$ (from the statement "for small x ") is the given line. Let's see- we need a point and a slope. The point will be $(0,1)$, and the slope is

$$
f^{\prime}(x)=\mathrm{e}^{x} \cos (x)-\mathrm{e}^{x} \sin (x) \quad \Rightarrow \quad f^{\prime}(0)=1
$$

The tangent line is given by $y-1=1(x-0)$, or $y=1+x$
13. A child is flying a kite. If the kite is 90 feet above the child's hand level and the wind is blowing it on a horizontal course at 5 feet per second, how fast is the child paying out cord when 150 feet of cord is out? (Assume that the cord forms a line- actually an unrealistic assumption).
Note: As with all word problems, your notation may be different than mine First, draw a picture of a right triangle, with height 90 , hypotenuse $y(t)$, the other leg $x(t)$. Note that these are varying until after we differentiate. So, we have that

$$
(y(t))^{2}=(x(t))^{2}+90^{2}
$$

and

$$
2 y(t) \frac{d y}{d t}=2 x(t) \frac{d x}{d t}
$$

We want to find $\frac{d y}{d t}$ when $y=150$ and $\frac{d x}{d t}=5$. We need to know $x(t)$, so use the first equation:

$$
150^{2}-90^{2}=x^{2} \Rightarrow x=120
$$

so

$$
2 \cdot 150 \frac{d y}{d t}=2 \cdot 120 \cdot 5 \Rightarrow \frac{d y}{d t}=4
$$

14. At 1:00 PM, a truck driver picked up a fare card at the entrance of a tollway. At 2:15 PM, the trucker pulled up to a toll booth 100 miles down the road. After computing the trucker's fare, the toll booth operator summoned a highway patrol officer who issued a speeding ticket to the trucker. (The speed limit on the tollway is 65 MPH).
(a) The trucker claimed that she hadn't been speeding. Is this possible? Explain.

SOLUTION: Nope. Not possible. The trucker went 100 miles in 1.25 hours, which is not possible if you go (at a maximum) of 65 miles per hour (which would only get you (at a max) 81.25 miles). In terms of the MVT:

$$
\frac{\text { Change in Position }}{\text { Change in time }}=\frac{100}{1.25}=80
$$

So we can guarantee that at some point in time, the trucker's speedometer read exactly 80 MPH .
(b) The fine for speeding is $\$ 35.00$ plus $\$ 2.00$ for each mph by which the speed limit is exceeded. What is the trucker's minimum fine? By the last computation, the trucker had an average speed of 80 mph , so we can guarantee (by the MVT) that at some point, the speedometer read exactly 80. So, this gives $\$ 35.00+\$ 2.00(15)=\$ 65.00$
15. Let $f(x)=\frac{1}{x}$
(a) What does the Extreme Value Theorem (EVT) say about f on the interval $[0.1,1]$?

SOLUTION: Since f is continuous on this closed interval, there is a global max and global min (on the interval).
(b) Although f is continuous on $[1, \infty)$, it has no minimum value on this interval. Why doesn't this contradict the EVT?
SOLUTION: The EVT was stated on an interval of the form $[a, b]$, which implies that we cannot allow a, b to be infinite.
16. Let f be a function so that $f(0)=0$ and $\frac{1}{2} \leq f^{\prime}(x) \leq 1$ for all x. Explain why $f(2)$ cannot be 3 (Hint: You might use a value theorem to help).
SOLUTION: We know that:

$$
\frac{f(2)-f(0)}{2-0}=f^{\prime}(c)
$$

for some c in $(0,2)$. Using the restrictions on the derivative,

$$
\frac{1}{2} \leq \frac{f(2)}{2} \leq 1
$$

so that $1 \leq f(2) \leq 2$.
17. Find (if possible) the global maximum and minimum of $g(x)=x /\left(x^{3}+2\right)$ on $[0, \infty)$.

SOLUTION: First, get the critical points.

$$
g^{\prime}(x)=\frac{1 \cdot\left(x^{3}+2\right)-x\left(3 x^{2}\right)}{\left(x^{3}+2\right)^{2}}=0 \quad \Rightarrow \quad x=1
$$

Check the sign of the derivative to see if it changes on the interval. We see that if $0 \leq x<1$, then $g^{\prime}(x)>0$, and if $x>1$, then $g^{\prime}(x)<0$. Therefore, the global maximum is when $x=1, g(1)=1 / 3$. There is no global minimum for $x>1$, as $g(x) \rightarrow 0$ as $x \rightarrow \infty$. The function does go through $(0,0)$ and increases to $1 / 3$, so 0 is the global minimum.
18. A poster is to contain 50 square inches of printed matter, with 4 inch margins at the top and bottom, and 2 inch margins on each side. What dimensions for the poster would use the least amount of paper?

SOLUTION: Let x, y be the width and height of the paper. Then the printed matter has dimensions $x-4$ by $y-8$. We then want to minimize the area of the paper, given that the printed matter is 50 square inches:

$$
\min A=x y \quad \text { such that }(x-4)(y-8)=50
$$

We want A to depend only on x, so solve the other equation for y :

$$
y=\frac{50}{x-4}+8 \quad \Rightarrow \quad A=\frac{50 x}{x-4}+8 x, \quad 0<x<\infty
$$

Now we find the critical points for A :

$$
\frac{d A}{d x}=\frac{50(x-4)-50 x}{(x-4)^{2}}=\frac{8 x^{2}-64 x-72}{(x-4)^{2}}=\frac{8(x+1)(x-9)}{(x-4)^{2}}
$$

so $x=-1$ and $x=9$. We only consider $x=9$ since $x>0$, and look to see if this we have a max or min here. A quick sign chart will help us:

$$
\begin{array}{l|cc}
x+1 & + & + \\
x-9 & - & + \\
(x-4)^{2} & + & + \\
\hline & 0<x<9 & x>9
\end{array}
$$

Therefore, the function is decreasing until $x=9$, then increases afterward so we have a global minimum at $x=9$, and $y=\frac{50}{9-4}+8=18$.
19. Henry, who is in a rowboat 2 miles from the nearest point B on a straight shoreline, notices smoke billowing from his house, which is 6 miles down the shoreline from point B. He figures he can row at 6 miles per hour and run at 10 miles per hour. How should he proceed in order to get to the house in the least amount of time?

SOLUTION: See the figure. Recall that distance equals rate times time, so $t=d / r$. If we let x be the point on the shore where we land, then there are two distances- the one on the water, which is $\sqrt{x^{2}+4}$, and the distance on land, $6-x$.

$$
T=\frac{\sqrt{x^{2}+4}}{2}+\frac{6-x}{10}, \quad 0 \leq x \leq 6
$$

Now we compute the critical point(s). After differentiation, put the result as a single fraction:

$$
T^{\prime}(x)=\frac{10 x-6 \sqrt{x^{2}+4}}{60 \sqrt{x^{2}+4}}=0 \quad \Rightarrow \quad 10 x=6 \sqrt{x^{2}+4}
$$

Square both sides to solve for x :

$$
100 x^{2}=36\left(x^{2}+4\right) \quad \Rightarrow \quad 64 x^{2}=144 \quad \Rightarrow \quad x=\frac{12}{8}=\frac{3}{2}
$$

Now check the time values at the endpoints and critical points:

$$
T(0)=0.93, \quad T(3 / 2)=0.87, \quad T(6)=1.05
$$

The shortest time will be using $x=3 / 2$.
20. Show that the rectangle with the maximum perimeter that can be inscribed in a circle is a square.

Now critical points:

$$
P^{\prime}=4+4 \frac{1}{2}\left(r^{2}-x^{2}\right)^{-1 / 2}(-2 x)=4-\frac{4 x}{\sqrt{r^{2}-x^{2}}}
$$

Set this to zero (you'll need to square both sides):
$\frac{4 x}{\sqrt{r^{2}-x^{2}}}=4 \quad \Rightarrow \quad 4 x=4 \sqrt{r^{2}-x^{2}} \quad \Rightarrow \quad 16 x^{2}=16\left(r^{2}-x^{2}\right) \quad \Rightarrow \quad 32 x^{2}=16 r^{2} \quad \Rightarrow \quad x=\frac{r}{\sqrt{2}}$
And $y=r / \sqrt{2}$, which makes the shape a perfect square.
21. Find the points on the hyperbola $x^{2} / 4-y^{2}=1$ that are closest to the point $(5,0)$.

SOLUTION: One note that will make the problem easier. Recall that the distance formula is

$$
d=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}
$$

The minimum of this value actually occurs at the same point (x, y) as the square of the distance,

$$
D=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}
$$

And so we can minimize the square of the distance rather than the distance itself (it makes the derivatives much easier). With that note, we have the distance (squared) between a point (x, y) and the point $(5,0)$, but the (x, y) must be on the hyperbola:

$$
\min (x-5)^{2}+(y-0)^{2} \quad \text { such that } \frac{x^{2}}{4}-y^{2}=1
$$

We'll go ahead and solve for y in the second expression and substitute it into the first:

$$
f(x)=(x-5)^{2}+\frac{x^{2}}{4}-1=\frac{5}{4} x^{2}-10 x+24 \quad \Rightarrow \quad \frac{5}{2} x-10=0 \quad \Rightarrow \quad x=4
$$

This is where the global minimum occurs for f since f is a parabola (opening upwards). Further, we also need the y-coordinate, which is $\sqrt{3}$.
22. Find the equation of a line through $(3,5)$ that cuts off the least area from the first quadrant.

SOLUTION: See the graph. Given a line, $y=m x+b$, then the length marked A is found by setting $y=0$, and solve for x, so length $A=$ $-b / m$. Similarly, the length marked B is found by substituting $x=0$, so length $B=b$. So, for the line $y=m x+b$, the triangle has area

$$
A=\frac{1}{2} b \frac{-b}{m}
$$

We need to be sure that $(3,5)$ is on the line, so $5=3 m+b$, or $m=$ $(5-b) / 3$. Substituting this into A, we get a function of one variable:

$$
A=\frac{1}{2} b \cdot \frac{-b}{1} \frac{3}{5-b}=\frac{3 b^{2}}{b-5}
$$

Are there restrictions on b ? We need $m<0$, so that $b>5$. Now differentiating as usual, we get

$$
\frac{d A}{d b}=\frac{3}{2} \frac{b(b-10)}{(b-5)^{2}}=0 \quad \Rightarrow \quad b=0, b=10
$$

We only keep $b=10$, and from the first derivative test (for $b>5$), we see that A is always decreasing until $b=10$, then always increasing afterward, so we have a global minimum at $b=10$. This gives $m=-5 / 3$, and our line is

$$
y=-\frac{5}{3} x+10
$$

23. A woman is in the water 1 mile from the closest point B on the straight shoreline. She wants to get to a town 3 miles down from B, so she can swim part of the way, and walk part of the way. If she can swim at 2 miles per hour and walk at 4 miles per hour, where on the shore should she land to minimize the time to town?

SOLUTION: See the figure. This one is set up just like the other one above. In this case,

$$
T(x)=\frac{\sqrt{1+x^{2}}}{2}+\frac{3-x}{4} \quad \Rightarrow \quad T^{\prime}(x)=0 \quad \Rightarrow \quad x=\frac{1}{\sqrt{3}}
$$

I left off the details of computing the derivative- Very similar to the previous problem. Now we evaluate T at $x=0, x=3$ and $x=1 / \sqrt{3}$, and we have a minimum when $x=1 / \sqrt{3}$.
24. Find the value of the indicated sum by first expanding the sum:
(a) $\sum_{k=1}^{7} \cos (k \pi)=\cos (\pi)+\cos (2 \pi)+\cos (3 \pi)+\cos (4 \pi)+\cos (5 \pi)+\cos (6 \pi)+\cos (7 \pi)=-1$
(b) $\sum_{j=2}^{6}(j+1)^{2}=3^{2}+4^{2}+5^{2}+6^{2}+7^{2}=135$
25. Write the indicated sum in sigma notation: $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{50}=\sum_{n=1}^{50}(-1)^{n+1} \frac{1}{n}$
26. Find the value of the sum by using the formulas on pg A37 (Theorem 3).
(a) $\sum_{k=1}^{7}[(k-1)(4 k+3)]=$ Expanding, we get

$$
\sum_{k=1}^{7} 4 k^{2}-k-3=4 \sum_{k=1}^{7} k^{2}-\sum_{k=1}^{7} k-3 \sum_{k=1}^{7} 1=4 \frac{7 \cdot 8 \cdot 15}{6}-\frac{7 \cdot 8}{2}-3 \cdot 7=511
$$

(b) $\sum_{n=1}^{10} 5 n^{2}(n+4)$ Similar to the last problem,

$$
5 \sum_{n=1}^{10} n^{3}+20 \sum_{n=1}^{10} n^{2}=5 \cdot\left(\frac{10 \cdot 11}{2}\right)^{2}+20 \cdot \frac{10 \cdot 11 \cdot 21}{6}=22825
$$

27. Find the most general antiderivative of $f(x)=3 \cos (x)-6 \sin (x)$.

SOLUTION: $F(x)=3 \sin (x)+6 \cos (x)+C$
28. If $f^{\prime}(x)=(x+1)(x-2)$, find the most general $f(x)$.

SOLUTION: Rewrite the derivative as $f^{\prime}(x)=x^{2}-x-2$, so that $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+C$
29. Find the most general $f(x)$, if $f^{\prime \prime}(x)=12 x+24 x^{2}$.

SOLUTION: $f^{\prime}(x)=6 x^{2}+8 x^{3}+C_{1}$, and $f(x)=2 x^{3}+2 x^{4}+C_{1} x+C_{2}$
30. Find f, if $f^{\prime}(t)=2 t-3 \sin (t)$, and $f(0)=5$.

$$
f(t)=t^{2}+3 \cos (t)+C \quad 5=0^{2}+3 \cdot 1+C \quad \Rightarrow \quad C=2
$$

Therefore, $f(t)=t^{2}+3 \cos (t)+2$.
31. Graphical Exercises Please look these problems over as well- They include some graphical analysis. Sect 4.2: 7, Sect 4.3: 5-6, 7-8, 31-32, Sect 4.9: 51-55

