## Review Set 1 Solutions

Here are the solutions to the questions not listed in the text.

1. (App. B) Find an equation of the line that satisfies the given condition:
(a) Through $(2,-3)$ perpendicular to $2 x+5 y+8=0$

SOLUTION: We have a point, and the slope can be determined from the given line- That line has slope (solve the equation for $y$ ) $-2 / 5$, so our new slope is $5 / 2$ :

$$
y+3=\frac{5}{2}(x-2)
$$

(b) Perpendicular to the previous line, through $(1,1)$.

SOLUTION: Perpendicular again means the slope is back to $-2 / 5$ :

$$
y-1=-\frac{2}{5}(x-1)
$$

2. (App B) Find the point on the $y$-axis that is equidistant from $(5,-5)$ and $(1,1)$. HINT: How is a generic point on the $y$-axis represented?
SOLUTION: A generic point on the $y$-axis is given by $(0, y)$. The distance between $(0, y)$ and $(5,-5)$ is given by:

$$
\sqrt{(0-5)^{2}+(y+5)^{2}} \text { or } \sqrt{y^{2}+10 y+50}
$$

The distance between $(0, y)$ and $(1,1)$ is given by:

$$
\sqrt{(0-1)^{2}+(y-1)^{2}}=\sqrt{y^{2}-2 y+1}
$$

Set these equal to each other (and square both sides) to find that $y=-4$.
3. (App A) Solve the inequality for $x$ :
(a) $1<4-2 x \leq 5$

SOLUTION: Subtract 4, then divide by -2 (and flip the inequalities):

$$
-\frac{1}{2} \leq x<\frac{3}{2}
$$

(b) $\frac{(x-1)(x+2)}{(x+1)} \geq 0$

SOLUTION: Use the sign chart analysis we discussed in class.

$$
\begin{array}{c|cccc}
x-1 & - & - & - & + \\
\\
x+2 & - & + & + & + \\
x+1 & - & - & + & + \\
\hline & x<-2 & -2<x<-1 & -1<x<1 & x>1
\end{array} \quad \Rightarrow \quad-2 \leq x<-1 \text { or } x \geq 1
$$

4. (App C) Write the equation of the circle of radius 3 centered at $(-2,5)$.

SOLUTION: $(x+2)^{2}+(y-5)^{2}=3^{2}$
5. (App C) Write the equation of the ellipse that has its major/minor axes parallel to the $x$ - and $y$ - axes respectively, centered at $(3,4)$ with axes lengths 4 and 3 , respectively. SOLUTION (Note: The axes of an ellipse are like the diameter of a circle):

$$
\frac{(x-3)^{2}}{2^{2}}+\frac{(y-4)^{2}}{(3 / 2)^{2}}=1
$$

6. Complete the square: $2 x^{2}-4 x+1$ (Recall that your answer should be in the form: $a(x-b)^{2}+c$ for suitable numbers $\left.a, b, c\right)$.
SOLUTION: When I complete the square, I like to factor out the leading term:

$$
2 x^{2}-4 x+1=2\left(x^{2}-2 x\right)+1=2\left(x^{2}-2 x+1\right)+1-2=2(x-1)^{2}-1
$$

7. Section 1.1: $2,3,7,9,25,27-30,31,33,38,49,53,55,69-70$
8. Section 1.3: 3, 5, 7, 9, 15, 21, 28, 30, 33, 35, 37, 39, 41, 43, 47, 50, 51

In Section 1.3, pay particular attention to function composition and function notation. For example, given a formula for $f(x)$, be able to write (and simplify) an expression for something like $f(a+h)-f(a-h)$

