SAMPLE EXAM 1 SOLUTIONS and COMMENTS

1. Give the definition: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Grading note: The limit is a crucial part of this definition. Also, remember to keep the arguments consistent- For example, if you're defining $f^{\prime}(x)$, don't use $f(a+h)$ in the difference quotient.
2. State the Fundamental Theorem of Calculus. Let f be continuous on $[a, b]$.

- If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$.

Note that this says that g is a specific antiderivative.

- Let F be any antiderivative of f. Then $\int_{a}^{b} f(x) d x=F(b)-F(a)$

3. True or False (and give a short reason):
(a) If f is continuous at $x=a$, then f is differentiable at $x=a$.

SOLUTION: False. For example, $f(x)=|x|$ is continuous at $x=0$, but the function is not differentiable at $x=0$.
(b) If $3 \leq f(x) \leq 5$ then $6 \leq \int_{1}^{3} f(x) d x \leq 10$

SOLUTION: True, since

$$
3 \leq f(x) \leq 5 \quad \Rightarrow \quad 3 \cdot(3-1) \leq \int_{1}^{3} f(x) d x \leq 5 \cdot(3-1)
$$

(c) All continuous functions have antiderivatives.

SOLUTION: True. If $f(x)$ is continuous, then $g(x)=\int_{a}^{x} f(t) d t$ is an antiderivative by the FTC.
(d) $\int_{-1}^{2}-x^{-2} d x=$.

SOLUTION: False. Since $-1 / x^{2}$ is NOT continuous on $[-1,2]$, we cannot use the FTC to evaluate the integral.
4. Find $f^{\prime}(x)$ directly from the definition of the derivative (using limits and without using l'Hospital's rule):

$$
f(x)=\sqrt{1+x}
$$

SOLUTION: Once we set up the difference quotient, multiply by the conjugate:

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{\sqrt{1+x+h}-\sqrt{1+x}}{h} \cdot \frac{\sqrt{1+x+h}+\sqrt{1+x}}{\sqrt{1+x+h}+\sqrt{1+x}}= \\
\lim _{h \rightarrow 0} \frac{(1+x+h)-(1+x)}{h(\sqrt{1+x+h}+\sqrt{1+x})}=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{1+x+h}+\sqrt{1+x})}=\frac{1}{2 \sqrt{1+x}}
\end{gathered}
$$

5. Derive the formula for the derivative of $y=\sin ^{-1}(x)$.

SOLUTION: First we re-write the function so we can implicitly differentiate it.

$$
\sin (y)=x
$$

This corresponds to a right triangle with an angle y, opposite length x, hypotenuse 1 , and adjacent side $\sqrt{1-x^{2}}$ (by the Pythagorean Theorem). Now differentiate and convert back to x :

$$
\cos (y) y^{\prime}=1 \quad \Rightarrow \quad y^{\prime}=\frac{1}{\cos (y)}=\frac{1}{\sqrt{1-x^{2}}}
$$

6. Find $d y / d x$ (solve for it, if necessary):
(a) $y=\sin ^{3}\left(x^{2}+1\right)+\tan ^{-1}(x)$

SOLUTION: Note the triple composition, so we'll use the chain rule:

$$
\frac{d y}{d x}=3 \sin ^{2}\left(x^{2}+1\right) \cos \left(x^{2}+1\right) \cdot 2 x+\frac{1}{x^{2}+1}
$$

(b) $y=3^{1 / x}+\sec (x)$

SOLUTION: $y^{\prime}=3^{1 / x} \ln (3) \cdot\left(-x^{-2}\right)+\sec (x) \tan (x)$
(c) $\sqrt{x+y}=4 x y$

SOLUTION: Remember to use the product rule for the right side of the equation-

$$
\frac{1+y^{\prime}}{2 \sqrt{x+y}}=4 y+4 x y^{\prime}
$$

Solving for y^{\prime}, break up the fraction on the left and group y^{\prime} terms together:

$$
y^{\prime}\left(\frac{1}{2 \sqrt{x+y}}-4 x\right)=-\frac{1}{2 \sqrt{x+y}}+4 y
$$

Let's make these single fractions to make the solution clearer:

$$
y^{\prime}\left(\frac{1-8 x \sqrt{x+y}}{2 \sqrt{x+y}}\right)=\frac{-1+8 y \sqrt{x+y}}{2 \sqrt{x+y}} \Rightarrow y^{\prime}=\frac{-1+8 y \sqrt{x+y}}{1-8 x \sqrt{x+y}}
$$

Grading note: You should end up with a single fraction, and not a compound fraction. You may use terms like $(x+y)^{-1 / 2}$ in your fraction, although it would be nice to clean up the terms.
7. Find the limit, if it exists (you may use any technique from class):
(a) $\lim _{x \rightarrow 0} \frac{1-\mathrm{e}^{-2 x}}{\sec (x)}=\frac{0}{1}=0$
(b) $\lim _{x \rightarrow 4^{+}} \frac{x-4}{|x-4|}=1$ NOTE: You should rewrite first as $\frac{x-4}{|x-4|}=\left\{\begin{aligned} 1 & \text { if } x>4 \\ -1 & \text { if } x<4\end{aligned}\right.$
(c) $\lim _{x \rightarrow-\infty} \sqrt{\frac{2 x^{2}-1}{x+8 x^{2}}}$

SOLUTION: Divide numerator and denominator by x, and since $x<0$, we will use the substitution $x=-\sqrt{x^{2}}$ to simplify. That is:

$$
\lim _{x \rightarrow-\infty} \sqrt{\frac{2 x^{2}-1}{x+8 x^{2}}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x^{2}-1} / x}{\sqrt{x+8 x^{2}} / x}=\lim _{x \rightarrow-\infty} \frac{-\sqrt{\frac{2 x^{2}-1}{x^{2}}}}{-\sqrt{\frac{x+8 x^{2}}{x^{2}}}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{2-\frac{1}{x^{2}}}}{\sqrt{\frac{1}{x}+8}}=\frac{1}{2}
$$

GRADING notes: Even though in this case it turned out that the negative signs canceled, that doesn't always happen. Also, don't leave your answer as $\sqrt{2 / 8}$ - Go ahead and simplify that to $1 / 2$.
(d) $\lim _{x \rightarrow 0^{+}} x^{x}$

For this, we'll need l'Hospital's rule. We need to manipulate the expression first.

$$
x^{x}=\mathrm{e}^{\ln \left(x^{x}\right)}=\mathrm{e}^{x \ln (x)}
$$

Therefore, we'll take the limit of the exponent first:

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{1 / x}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0^{+}}-x=0
$$

Overall, the limit is e^{0}, or 1 .
8. Evaluate the Riemann sum by first writing it as an appropriate definite integral: $\lim _{n \rightarrow \infty} \sum_{n=1}^{\infty} \frac{3}{n} \sqrt{1+\frac{3 i}{n}}$.

We see that a natural choice for $(b-a) / n$ is $3 / n$, and $a+i \frac{b-a}{n}=1+\frac{3 i}{n}$. In that case, $a=1, b=1+3=4$, and $f(x)=\sqrt{x}$. In that case,

$$
\lim _{n \rightarrow \infty} \sum_{n=1}^{\infty} \frac{3}{n} \sqrt{1+\frac{3 i}{n}}=\int_{1}^{4} \sqrt{x} d x=\left.\frac{2}{3} x^{3 / 2}\right|_{1} ^{4}=\frac{2}{3}\left(2^{3}-1^{3 / 2}\right)=\frac{14}{3}
$$

Notice that there are an infinite number of equivalent choices here. For example,

$$
\int_{0}^{3} \sqrt{1+x} d x, \quad \int_{2}^{5} \sqrt{x-1} d x, \quad \int_{3}^{6} \sqrt{x-2} d x, \quad \text { etc. }
$$

9. Differentiate: $F(x)=\int_{\sqrt{x}}^{x^{2}} \frac{t}{1+t} d t$
$F^{\prime}(x)=\frac{x^{2}}{1+x^{2}}(2 x)-\frac{\sqrt{x}}{1+\sqrt{x}} \frac{1}{2 \sqrt{x}}$
This comes from the generalization to the FTC. If $g(x)=\int_{a}^{x} f(t) d t$, then

$$
\begin{gathered}
F(x)=\int_{h_{1}(x)}^{h_{2}(x)} f(t) d t=g\left(h_{1}(x)\right)-g\left(h_{2}(x)\right) \Rightarrow \\
F^{\prime}(x)=g^{\prime}\left(h_{2}(x)\right) h_{2}^{\prime}(x)-g^{\prime}\left(h_{1}(x)\right) h_{1}^{\prime}(x)=f\left(h_{2}(x)\right) h_{2}^{\prime}(x)-f\left(h_{1}(x)\right) h_{1}^{\prime}(x)
\end{gathered}
$$

10. Use the definition to evaluate $\int_{0}^{3} 1+3 x d x$

$$
\begin{gathered}
\int_{0}^{3} 1+3 x d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+3\left(\frac{3 i}{n}\right)\right) \frac{3}{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n}+\frac{27 i}{n^{2}}=\lim _{n \rightarrow \infty}\left(\frac{3}{n} \sum_{i=1}^{n} 1+\frac{27}{n^{2}} \sum_{i=1}^{n} i\right)= \\
\lim _{n \rightarrow \infty}\left(\frac{3}{n} \cdot n+\frac{27}{n^{2}} \frac{n(n+1)}{2}\right)=3+\frac{27}{2}=\frac{33}{2}
\end{gathered}
$$

As a check, we can use FTC: $\int_{0}^{3} 1+3 x d x=\left(x+\left.(3 / 2) x^{2}\right|_{0} ^{3}=3+\frac{27}{2}=\frac{33}{2}\right.$
11. Evaluate, or find the general indefinite integral.
(a) $\int \sqrt{x^{3}}+\frac{1}{x^{2}+1} d x=\frac{2}{5} x^{5 / 2}+\tan ^{-1}(x)+C$
(b) $\int_{-1}^{1} t(1-t) d t=\frac{1}{2} t^{2}-\left.\frac{1}{3} t^{3}\right|_{-1} ^{1}=\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{2}+\frac{1}{3}\right)=-\frac{2}{3}$
(c) $\int_{0}^{1} 5 x-5^{x} d x=\frac{5}{2} x^{2}-\left.\frac{5^{x}}{\ln (5)}\right|_{0} ^{1}=\left(\frac{5}{2}-\frac{5}{\ln (5)}\right)-\left(0-\frac{1}{\ln (5)}\right)=\frac{5}{2}-\frac{4}{\ln (5)}$
12. Evaluate:
(a) $\int_{0}^{1} \frac{d}{d x}\left(\mathrm{e}^{\tan ^{-1}(x)}\right) d x=\mathrm{e}^{\tan ^{-1}(1)}-\mathrm{e}^{\tan ^{-1}(0)}$

Explanation: This is of the form $\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)$, where $f(x)=\mathrm{e}^{\tan ^{-1}(x)}$.
(b) $\frac{d}{d x} \int_{0}^{1} \mathrm{e}^{\tan ^{-1}(x)} d x=0$

Explanation: Recall that $\int_{0}^{1} f(x) d x$ is a number, and the derivative of a constant is zero.
(c) $\frac{d}{d x} \int_{0}^{x} \mathrm{e}^{\tan ^{-1}(t)} d t=\mathrm{e}^{\tan ^{-1}(x)}$

Explanation: This is the FTC- If $g(x)=\int_{0}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$.
13. Given the graph of the derivative, $f^{\prime}(x)$, below, answer the following questions:
(a) Find all intervals on which f is increasing.
(b) Find all intervals on which f is concave up.
(c) Sketch a possible graph of f if we require that $f(0)=-1$.

SOLUTION:

14. A rectangle is to be inscribed between the x-axis and the upper part of the graph of $y=8-x^{2}$ (symmetric about the y-axis). For example, one such rectangle might have vertices: $(1,0),(1,7),(-1,7),(-1,0)$ which would have an area of 14 . Find the dimensions of the rectangle that will give the largest area. SOLUTION: Try drawing a picture first: The parabola opens down, goes through the y-intercept at 8 , and has x-intercepts of $\pm \sqrt{8}$.

Now, let x be as usual, so that the full length of the base of the rectangle is $2 x$. Then the height is y, or $8-x^{2}$. Therefore, the area of the rectangle is:

$$
A=2 x y=2 x\left(8-x^{2}\right)=16 x-2 x^{3}
$$

and $0 \leq x \leq \sqrt{8}$. We see that the area will be zero at the endpoints, so we expect a maximum at the critical point inside the interval:

$$
\frac{d A}{d x}=16-6 x^{2}
$$

so the critical points are $x= \pm \sqrt{8 / 3}$, of which only the positive one is in our interval. So the dimensions of the rectangle are as follows (which give the maximum area of approx. 17.4):

$$
2 x=2 \sqrt{8} 3 \quad y=8-\frac{8}{3}=\frac{16}{3}
$$

15. Find all values of c and d so that f is continuous at all real numbers:

$$
f(x)=\left\{\begin{aligned}
2 x^{2}-1 & \text { if } x<0 \\
c x+d & \text { if } 0 \leq x \leq 1 \\
\sqrt{x+3} & \text { if } x>1
\end{aligned}\right.
$$

Be sure it is clear from your work that you understand the definition of continuity.
SOLUTION: First, we note that f is continuous for all values of c, d if we remove $x=0$ and $x=1$ from the domain, so those are the only points we need to check. We'll check $x=0$ first:

- $f(0)$ exists? Yes: $f(0)=0+d=d$ (Exists for all choices of c, d).
- Does the limit exist at $x=0$? Check both directions:

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 2 x^{2}-1=-1 \quad \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} c x+d=d
$$

For the limit to exist overall, we must have: $d=-1$ (which will also make the limit equal to $f(0)$).
Check $x=1$ now (and we'll go ahead and replace d with -1):

- $f(1)$ exists? Yes: $f(1)=c-1$ (Exists for all choices of c, d).
- Does the limit exist at $x=1$? Check both directions:

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} c x-1=c-1 \quad \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \sqrt{x+3}=2
$$

For the limit to exist overall, we must have: $c-1=2$, or $c=3$
Therefore, if $c=3$ and $d=-1, f$ will be continuous at every x.

